This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001222 Number of prime divisors of n counted with multiplicity (also called bigomega(n) or Omega(n)). (Formerly M0094 N0031) 1130

%I M0094 N0031

%S 0,1,1,2,1,2,1,3,2,2,1,3,1,2,2,4,1,3,1,3,2,2,1,4,2,2,3,3,1,3,1,5,2,2,

%T 2,4,1,2,2,4,1,3,1,3,3,2,1,5,2,3,2,3,1,4,2,4,2,2,1,4,1,2,3,6,2,3,1,3,

%U 2,3,1,5,1,2,3,3,2,3,1,5,4,2,1,4,2,2,2,4,1,4,2,3,2,2,2,6,1,3,3,4,1,3,1,4,3,2,1,5,1,3,2

%N Number of prime divisors of n counted with multiplicity (also called bigomega(n) or Omega(n)).

%C Maximal number of terms in any factorization of n.

%C Number of prime powers (not including 1) that divide n.

%C Sum of exponents in prime-power factorization of n. - _Daniel Forgues_, Mar 29 2009

%C Sum_{d|n} 2^(-A001221(d) - A001222(n/d)) = Sum_{d|n} 2^(-A001222(d) - A001221(n/d)) = 1 (see Dressler and van de Lune link). - _Michel Marcus_, Dec 18 2012

%C Row sums in A067255. - _Reinhard Zumkeller_, Jun 11 2013

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 119, #12, omega(n)..

%D M. Kac, Statistical Independence in Probability, Analysis and Number Theory, Carus Monograph 12, Math. Assoc. Amer., 1959, see p. 64.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H N. J. A. Sloane and Daniel Forgues, <a href="/A001222/b001222.txt">Table of n, a(n) for n = 1..100000</a> (first 10000 terms from N. J. A. Sloane)

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://apps.nrbook.com/abramowitz_and_stegun/index.html">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy], p. 844.

%H B. Cloitre, <a href="http://arxiv.org/abs/1107.0812">A tauberian approach to RH</a>, arXiv:1107.0812 [math.NT], 2011.

%H Robert E. Dressler and Jan van de Lune, <a href="http://dx.doi.org/10.1090/S0002-9939-1973-0340191-8">Some remarks concerning the number theoretic functions omega and Omega</a>, Proc. Amer. Math. Soc. 41 (1973), 403-406.

%H G. H. Hardy and S. Ramanujan, <a href="http://www.imsc.res.in/~rao/ramanujan/CamUnivCpapers/Cpaper35/page1.htm">The normal number of prime factors of a number</a>, Quart. J. Math. 48 (1917), 76-92. Also Collected papers of Srinivasa Ramanujan, AMS Chelsea Publ., Providence, RI (2000): 262-275.

%H Amarnath Murthy and Charles Ashbacher, <a href="http://www.gallup.unm.edu/~smarandache/MurthyBook.pdf">Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences</a>, Hexis, Phoenix; USA 2005. See Section 1.4, 1.10.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimeFactor.html">Prime Factor</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Roundness.html">Roundness</a>

%H Wolfram Research, <a href="http://functions.wolfram.com/NumberTheoryFunctions/FactorInteger/03/02">First 50 numbers factored</a>

%H <a href="/index/Cor#core">Index entries for "core" sequences</a>

%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%F n = Product_(p_j^k_j) -> a(n) = Sum_(k_j).

%F Dirichlet generating function: ppzeta(s)*zeta(s). Here ppzeta(s) = Sum_{p prime} Sum_{k=1}^{infinity} 1/(p^k)^s. Note that ppzeta(s) = Sum_{p prime} 1/(p^s-1) and ppzeta(s) = Sum_{k=1}^{infinity} primezeta(k*s). - _Franklin T. Adams-Watters_, Sep 11 2005.

%F Totally additive with a(p) = 1.

%F a(n) = if n=1 then 0 else a(n/A020639(n)) + 1. - _Reinhard Zumkeller_, Feb 25 2008

%F a(n) = Sum_{k=1..A001221(n)} A124010(n,k). - _Reinhard Zumkeller_, Aug 27 2011

%F a(n) = A022559(n) - A022559(n-1).

%F G.f.: Sum_{p prime, k>=1} x^(p^k)/(1 - x^(p^k)). - _Ilya Gutkovskiy_, Jan 25 2017

%F a(n) = A091222(A091202(n)) = A000120(A156552(n)). - _Antti Karttunen_, circa 2004 and Mar 06 2017

%F a(n) >= A267116(n) >= A268387(n). - _Antti Karttunen_, Apr 12 2017

%e 16=2^4, so a(16)=4; 18=2*3^2, so a(18)=3.

%p with(numtheory): seq(bigomega(n), n=1..111);

%t Array[ Plus @@ Last /@ FactorInteger[ # ] &, 105]

%t PrimeOmega[Range[120]] (* _Harvey P. Dale_, Apr 25 2011 *)

%o (PARI) vector(100,n,bigomega(n))

%o (MAGMA) [n eq 1 select 0 else &+[p[2]: p in Factorization(n)]: n in [1..120]]; // _Bruno Berselli_, Nov 27 2013

%o (Sage) [sloane.A001222(n) for n in (1..120)] # _Giuseppe Coppoletta_, Jan 19 2015

%o import Math.NumberTheory.Primes.Factorisation (factorise)

%o a001222 = sum . snd . unzip . factorise

%o -- _Reinhard Zumkeller_, Nov 28 2015

%o (Scheme)

%o (define (A001222 n) (let loop ((n n) (z 0)) (if (= 1 n) z (loop (/ n (A020639 n)) (+ 1 z)))))

%o ;; Requires also A020639 for which an equally naive implementation can be found under that entry. - _Antti Karttunen_, Apr 12 2017

%Y Cf. A001221 (omega (n), primes counted without multiplicity), A046660, A144494, A074946, A134334. Bisections give A091304 and A073093. A086436 is essentially the same sequence. A022559 (partial sums).

%Y Sequences listing n such that a(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - _Jason Kimberley_, Oct 02 2011

%Y Cf. A079149 (primes adj. to integers with at most 2 prime factors, A001222(n)<=2).

%Y Cf. A000120, A020639, A091202, A091222, A156552, A267116, A268387.

%Y For partial sums see A022559.

%K nonn,easy,nice,core

%O 1,4

%A _N. J. A. Sloane_, Apr 30 1991

%E More terms from _David W. Wilson_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.