This site is supported by donations to The OEIS Foundation.



Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 4500 articles have referenced us, often saying "we would not have discovered this result without the OEIS".

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001203 Continued fraction expansion of Pi.
(Formerly M2646 N1054)

%I M2646 N1054

%S 3,7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2,1,84,2,1,1,15,3,13,1,4,2,

%T 6,6,99,1,2,2,6,3,5,1,1,6,8,1,7,1,2,3,7,1,2,1,1,12,1,1,1,3,1,1,8,1,1,

%U 2,1,6,1,1,5,2,2,3,1,2,4,4,16,1,161,45,1,22,1,2,2,1,4,1,2,24,1,2,1,3,1,2,1

%N Continued fraction expansion of Pi.

%C The first 5,821,569,425 terms were computed by _Eric W. Weisstein_ on Sep 18 2011.

%C The first 10,672,905,501 terms were computed by _Eric W. Weisstein_ on Jul 17 2013.

%C The first 15,000,000,000 terms were computed by _Eric W. Weisstein_ on Jul 27 2013.

%D P. Beckmann, "A History of Pi".

%D C. Brezinski, History of Continued Fractions and Pade' Approximants, Springer-Verlag, 1991; pp. 151-152.

%D K. Y. Choong, D. E. Daykin and C. R. Rathbone, Regular continued fractions for pi and gamma, Math. Comp., 25 (1971), 403.

%D J. R. Goldman, The Queen of Mathematics, 1998, p. 50.

%D R. S. Lehman, A Study of Regular Continued Fractions. Report 1066, Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland, Feb 1959.

%D G. Lochs, Die ersten 968 Kettenbruchnenner von Pi. Monatsh. Math. 67 1963 311-316.

%D C. D. Olds, Continued Fractions, Random House, NY, 1963; front cover of paperback edition.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H N. J. A. Sloane, <a href="/A001203/b001203.txt">Table of n, a(n) for n = 0..19999</a> [from the Plouffe web page]

%H James Barton, <a href="http://www.virtuescience.com/pi-in-other-bases.html">Simple Continued Fraction Expansion of Pi</a> [From _Lekraj Beedassy_, Oct 27 2008]

%H E. Bombieri and A. J. van der Poorten, <a href="http://www-centre.mpce.mq.edu.au/alfpapers/a113.pdf">Continued fractions of algebraic numbers</a>

%H Exploratorium, <a href="http://chesswanks.com/seq/cfpi/">180 million terms of the simple CFE of pi</a>

%H Bill Gosper and Julian Ziegler Hunts, <a href="/A001203/a001203.gif">Animation</a>

%H B. Gourevitch, <a href="http://www.pi314.net">L'univers de Pi</a>

%H H. Havermann, <a href="http://chesswanks.com/pxp/cfpi.html">Simple Continued Fraction for Pi</a> [a 483 MB file containing 180 million terms]

%H Simon Plouffe, <a href="http://www.plouffe.fr/simon/constants/">20 megaterms of this sequence as computed by Hans Havermann</a>, starting in file CFPiTerms20aa.txt

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PiContinuedFraction.html">Pi Continued Fraction</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Pi.html">Pi</a>

%H G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>

%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>

%H <a href="/index/Ph#Pi314">Index entries for sequences related to the number Pi</a>

%e Pi = 3.1415926535897932384...

%e = 3 + 1/(7 + 1/(15 + 1/(1 + 1/(292 + ...))))

%e = [a_0; a_1, a_2, a_3, ...] = [3; 7, 15, 1, 292, ...]

%p cfrac (Pi,70,'quotients'); # _Zerinvary Lajos_, Feb 10 2007

%t ContinuedFraction[Pi, 98]

%o (PARI) contfrac(Pi) \\ contfracpnqn(%) is also useful!

%o (PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi); for (n=1, 20000, write("b001203.txt", n, " ", x[n])); } \\ _Harry J. Smith_, Apr 14 2009

%o (Sage) continued_fraction(RealField(333)(pi)) # _Peter Luschny_, Feb 16 2015

%Y Cf. A000796 for decimal expansion. See A007541 or A033089, A033090 for records.

%Y Cf. A097545, A097546.

%K nonn,nice,cofr

%O 0,1

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 1 19:01 EST 2015. Contains 264703 sequences.