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GENERATION OF A CLASS OF PERMUTATIONS ASSOCIATED
WITH COMMUTING FUNCTIONS

William M. Boyce
I, INTRODUCTION

This paper deals with the systematic generation and classification of a class
of permutations (Baxter permutations) which arose 1in the study of commuting functions.
The principal question concerning commuting functions was raised in 1954 by Eldon
Dyer. It may be stated as follows: let f and g be continuous functions mapping
the unit interval into itself which commute under functional composition, that 1s,
f{g(x)) = g(f(x)) for all x. Must f and g have a common fixed point, meaning a
point z such that f£(z) = z = g(z)? This question was answered in the negative by
the author's construction of a "counterexample" [4], making use of the results pre-
sented here. (J. P. Huneke has independently constructed negative examples 51,
using a different technique.) Under a mild finiteness condition, a palr of commut-
ing functions induces a Baxter permutation; conversely, a Baxter permutation can
often be used to define a pair of commuting functions which induce it. The signifi-
cance of this should be judged in the light of Baxter and Joichi's statement that

- [31 ". . . among the primary difficulties encountered in attempting to verify the
c:onjecture [of a common fixed point] in more general cases 1s the lack of a plenti-
ful supply of examples to investigate." By systematically generating Baxter per-
mutations and attempting to extend them to commuting functions, the author dis-

covered a pair of commuting functions with no common fixed point.

In what follows, N always denotes an odd natural number, IN the set of natural
numbers through N, ON the odd elements of IN’ EN the even elements of IN’ and P is
permutation P: IN 5 IN.

DEREECTION. 'P3i I, =L is a Baxter permutation of order N if and only if

N N°

(1) P(ON) = Oy P(EN) = Eg
(2) if P(n) is between P(21) and P(2i+l), then n = 2i;
(3) if P(n) is between P(21-1) and P(2i), then n < 21,

The intervals [2i, 2i+1] are called up-intervals and the intervals [2i=1;01]
down-intervals,

The relationship between commuting functions and Baxter permutations is given
in the following theorem [1].
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THEOREM, (Baxter) Let f and g be continuous functions mapping the unit interval
into 1tself which commute, let h(x) = f(g(x)) = g(f(x)), let H' be the set of fixed
points of h, and suppose that H' is finite and contains nelther endpoint of the unit
interval. Let H; be the set of points where h(x)-x goes from negative to positive
(up-crossing points), H, the set of points where h(x)-x goes from positive to nega-
tive (down-crossing points), and H3 the set of points where the graph of h touches
the diagonal but does not cross i1t. Let H = Hl(J H2. Then

(1) £(H') = H', f(Hl) = H, f(HQ) = H,, so f 1s a permutation of H, and g is
the inverse permutation;

(2) elements of H, and H, alternate, with the first and last elements in H,,
so that if the elements of H are denoted tl’ t2, e e ey tN’ in order, the odd-
numbered are in Hé and the even-numbered in Hl’ then

(a) ir f(tn) is between f(tei) and f(t21+1), then n = 21;
(b) 1rf f(tn) is between f(tEi_l) and f(t21), then n < 21;

(3) pP: Iy = Iy glven by P(1) = j if and only if f(ti) = tJ is a Baxter
permutation,

Note that the orlginal significance of the terms "up-interval” and "down-
interval were that they described whether the graph of h was above or below the
dlagonal on the interval,

If we have an x such that £(x) = x and h(x) = x, then g(x) = g(f(x)) = h(x) = x,
so that 1f f has a fixed point in H', f and g have a common fixed point, In particu-
lar, if the Baxter permutation induced by £ and g has a fixed point, then f and g
have a common fixed point. For these permutations the answer to Dyer's question is
obvious, so they will be called trivial Baxter permutations.

The steps taken by the author in his search for a counterexample were for each
successive N to generate the set of Baxter permutations of order N, distinguish
between the trivial and non-trivial ones, and give speclal attention to each non-
trivial case. The object of the speclal attention was to attempt to establish
whether the permutation could be induced by commuting functions and, if so, whether
the functions must have a common fixed point (which would then be a point of H3).
To reduce the amount of special attention required, Baxter permutations were
divided into equivalence classes relative to the common fixed point question. To
reduce the amount of labor in generating and equivalencing permutations, the author
discovered theorems and algorithms which generate Baxter permutations efficiently
and wrote a computer program Incorporating them, The following section presents
these results.

II. THEORY

The first theorem is an aild in generating the permutations. The "inverse" part
was proved by Baxter and Joichi in [2] ; the "reflection" parts are left to the
reader,
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THEOREM 1. If P: Iy -~ Iy is a Baxter permutation, then P! 15 also.

Let U: IN - IN be defined by U(i) = N+ 1 - 1, Then UP, PU, and UPU are also
Baxter permutations.

Corollary. P'1 and UPU are Baxter permutations which have a fixed point if and only
if P does. An equivalence class under these relationships consists of P, P'l, UPU,
and UP'l U, and may contain one, two, or four members due to possible duplication.

To see why thils definition of equivalence class 1s chosen, suppose that f and g
are commuting continuous functions on the unit interval which induce the permutation
P. Then by simply redesignating g as f and f as g, the permutation induced will be
changed to P_lg and if we define u(x) = 1-x, then ufu and ugu will commute and induce
the permutation UPU, 1In either case the property of having or not having a common
fixed point 1s preserved.

The following theorem provides the greatest savings in generating Baxter permu-
tations. It states that the action of P on the even elements is determined by 1ts
action on the odd elements. Thus only ((N+1)/2)! permutations must be considered
for N, rather than N!

THEOREM 2. Let P be a Baxter permutation of order N and let j be even, Then

(1) 1f P(J+1) > P(j-1), then P(J) is the least element of Ey which is greater
than P(j-1) and not in P(I._l);

(2) 1if P(j+1) < P(J—lg, then P(j) is the greatest element of Ey which is less
than P(j-1) and not in P(Ij_l).

Proof . For (1), since j is even, [j,j+1] is an up-interval, so we cannot have
P(j-1) between P(j) and P(J+1). Thus P(J) > P(J-1). The interval [J-1,J] is a
down-interval, so for any n = P(1i) between P(Jj-1) and P(J), we must have 1 < j, or
n in P(Ij—l)' Thus P(j) is the least element of Ey greater than P(j-1) and not in
P(IJ_l). Part (2) 1s the statement of part (1) for the Baxter permutation UP.

Corollary. P: EN = EN 1s determined by P: ON - ON’ so there are at most
((N+1)/2)! Baxter permutations of order N.

Proof. Given P: Oy = Oy, P(2) 1s determined by P on Oy, P(4) 1s determined by
P on ON and P(2), et cetera, so that P: EN - EN is inductively determined.

The next theorem is not strictly necessary for the generation of the permuta-
tions but is stated for completeness.
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DEFINITION, A subset C of Sc:IN 1s called connected-rel-S if no element of S not
in C lies between two elements of C. A component-rel-S of X 1s a maximal connected-

rel-S subset of X.

THEOREM 3. Glven any permutation Q: ON ~ON, the extension of Q to EN glven by
Theorem 2 and the Corollary is well-defined and results in a permutation satisfying
parts (1) and (3) of the definition--that is, at most the up-intervals are violated.
Fach component—rel—:[N of Q(Igi) contains equal numbers of odd and even elements.

Proof. Let us prove the last statement first, by induction. Q(IE) consists of Q(1)
and either Q(1)+1 or Q(1l)-1, depending on whether Q(3) > Q(1) or Q{(3) < Q(1). Thus
Q(Ig) has one component with one odd element and one even element. Suppose now that
each component of Q(Izi) has equal numbers of odd and even elements. Assume

Q(21+3) > Q(21+1). There are k odd elements and k+l even elements between Q(2i+1)
and Q(21+3), so since neither Q(2i+1) nor Q(21+3) is in Q(Igi), there are at most k
odd elements and k even elements between Q(2i+1) and Q(2i+3) which are in Q(I2i).
Thus there is an even element left to be chosen as Q(21+2). If Q(2i+1)+1 is not in
Q(Igi), then Q(21+2) = Q(21+1)+1, and {Q(zifl), Q(21+2)} 1s a connected set. If
Q(2i+1)+1 is in Q(12i>’ then it must lle in a component of Q(IEi) wlth equal numbers
of odd and even elements, so that Q(2i+l)+2, . . . , Q(2i+1)+2n are in Q(Izi), and
Q(21i+1)+2n+1 is not in Q(I2i) and 1s even., Then Q(2i+2) = Q(2i+1)+2n+l, so

Q(2i+1) and Q(2i+2) are in the same component-rel-Iy of Q(I21+2). In either case
Q(2i+1) and Q(21i+2) lie in a connected subset of Q(I21+2), s0 each component of x
><"J

Q(Igi+2) wlll have equal numbers of odd and even elements. The proof for Q(2i+3
Q(21+1) 1s exactly the same, so the assertion is proved by induction, To show that
the extension of Q from ON to IN 1ls well-defined, 1t suffices to show that there is
always an even element between Q(2i1+1) and Q(2i+3) which is not in Q(IQi). But this
follows from the nature of the components of Q(Igi), since there are k odd and k+1
even elements between Q(21+1) and Q(21+3), so at most k of the even ones can be in
Q(Iei)' Thus the extension 1s well-defined. To show that Q: IN - IN satisfles
parts (1) and (3) of the definition of Baxter permutation, only part (3) must be
verlfied; so 1t must be shown that if Q(n) is between Q(2i-1) and Q(21), then n = 2i.
Every even element n between Q(2i-1) and Q(2i) must be in Q(Igi_g)’ or else it would
have been chosen for Q(21i) in preference to the value chosen. But since there are
an even number of elements between Q(2i-1) and @Q(21), and because of the nature of
the components of Q(121-2)’ for each odd element between Q(21-1) and Q(21i) there
must be a similar even element. Since this cannot be, part (3) will always be
satisfied.
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Corollary. If Q: ON = ON is a permutation, let Qx denote the extension of Q to
IN as glven by Theorem 2 and its corollary. Tnen Qx is a Baxter permutation if

and only if @€ = (QU)*U.

Proof. (QU)XU is the extension of Q to IN one gets by running Theorem 2 and 1its
corollary "backwards," first defining Q(N-1) (N-1 being even), then defining Q(N-3)
in terms of Q: Oy ~ Oy and Q(N-1), et cetera,. (QU)Y*U will satisfy parts (1) and
(2) of the definition. If @ = (QU)*U, then Q* satisfies all three parts of the
definition and is thus a Baxter permutation. On the other hand, if P is a Baxter
permutation, then PU is also; thus P is uniquely determined by either By ON = ON
or PU: ON = ON.

Before the author discovered the method of direct generation of Baxter per-
mutations on ON’ the preceding corollary proved useful in separating the permutations
of ON which could be extended to Baxter permutations from those which could not.

The next theorem characterizes the action of Baxter permutations on the odd
elements in a manner ideally suited for computer generation of the permutations.

THEOREM 4., Let P: IN - IN be a Baxter permutation and let J be odd.
(1) 1If P(j) < P(j-2), let m be the least element of the component-rel-Oy
of P(OJ_2) containing P(j-2), and let Mz(j) = m-2. Then MQ(J) is odd and not in

P(oJ_e). Let Ml(J) be the least element of the component-rel-Opof Oy \ P(OJ_2)
which contains MQ(J). Tnen M,(J) = P(J) = M2(J).

(2) If P(j) > P(J-2), let m be the greatest element of the component-rel-Oy
of P(O._2) which contains P(j-2), and let M3(J) = m+2. Then MB(J) is odd and not
in P(O._z). Let Mu(j) be the greatest element of the component-rel-Oy of .
Oy \ P oj_zo which contains MB(J). Then M3(J) < P(j) s Mu(J).

Proof., For part (1),by definition P(j) = M2(J). Suppose that P(j) < Ml(j). Then

there is an element n of P(OJ_Q) such that P(J) < n < Ml(j), since otherwise P(j)
and Ml(j) would be in the same component-rel-Oy gf Oy X P(OJ_2). T Blj=1) = m,
then n would be between P{J-1) and P(J) but P *(n) < j-2; but since j-1 is even
and j odd, this violates part (2) of the definition of a Baxter permutation. If
P(j-1) < n, then Mg(j) is between P(j-2) and P(J-1), with P_l(MQ(J)) > j. Sines
j-2 1s odd and j-1 even, this violates part (3) of the definition, Part (2) of
the theorem is proved similarly.

Corollary. The following process will generate all Baxter permutations of order

N: pick a value P(1), then a value P(3) such that P(3) # P(1). Define Ml(5),
M2(5), M3(5), and Mu(s). Choose P(5) such that either M1(5) < P(5) = M2(5) or
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M3(5) < P(5) = Mu(s), except that if M2(5) = -1 or M3(5) = N+2, then P(5) must be
chosen from the other interval. Continue in this manner for P(7), P(9), et cetera,
until P: ON - ON has been defined. Then extend P to'EN by the rules of Theorem 2
and 1ts corollary. -

THEOREM 5. Every permutation generated in the manner described in Theorem 4 and
its corollary will be a Baxter permutation.

Proof . By Theorem 3, the permutation P will satisfy parts (1) and (3) of the
definition of Baxter permutation, so it remains to prove part (2) is satisfied.
Suppose not; then let 1 be the least integer for which there is an element n < 21
such that P(n) is between P(21) and P(21+1)--we may assume that n is also the
greatest of its kind. Suppose now that P(2i) < P(21+1), so that P(2i-1) < P(2i).
If there were a k such that n < k < 21 and P(k) and P(k+1) lay on opposite sides of
the interval [P(21), P(21+1)], then both P(n) and P(2i) would lie between P(k) and
P(k+1), which would make [k,k+1] simultaneously an up-interval and a down-interval;
but since we assumed that 21 was the least element for which such ambigulty could
occur, no such k can exist., Thus we must have P(n+l) < P(21), for if P(n+l) >
P(21+1), by the preceding argument about k there is no way to get back down to
P(2i-1), Since P(21) is between P(n) and P(n+l), (n,n+1] must be an up-interval,
so n must be even. This implies that P(n) must be the least element of P(I2i-2)

n [P(21), P(21+1)]. Thus P(21)+1 is odd and is not in P(Ogi_l), so M3(21+l) <
P(21)+1. The component~-rel-Iy of P(Iei) which contains P(n) must contain at least
one odd element, in particular P(n)+l, since P(n) is the least element of the com-
ponent, Thus M4(21+l) < P(n)+1 < P(2i+1), But this violates the conclusions of
Theorem 4, A similar argument may be given when P(2i) > P(21+1). Thus if a per-
mutation 1s defined on ON to agree with Theorem 4, and extended to IN to agree with
Theorem 2, then it is a Baxter permutation.

III, IMPLEMENTATION

Theorems 2 and 4 have been implemented in a FORTRAN computer program so as to gen-
erate all Baxter permutations of order N, The equivalence classes containing P and
UP are generated in the same cycle. The order in which they are generated is lexico-
graphical, based on the "least" member of the palr of equivalence classes. First

P: ON - ON Ei generate?i using t?i algorithm of_Eheorem 4. Then the other permu-
tations P -, UPU, UP U, UP, P""U, PU, and UP are computed from P, P is
lexicographically compared with each of the seven permutations; if any 1s less than
P, then the pair of equivalence classes has been generated earller, so the group is
rejected. If P is lexlcographically least, P and UP are checked to see if they have
a fixed point. Then duplicatlons among the permutatlions are eliminated, and the

resulting equivalence classes (or class) are recorded.
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‘ The counterexample found by the author was de

The most complicated routine is the computation of P: 0O
this routine includ two explicit DO loops, for P(1l) and P
purpose DO which cycles the current value of P(2i+l1) for i/> 1. After the choice
of a value for P(21+1))\ the Mi(21+3) are computed and a yector of admissable values
for P(2i+3) established.\ Then the least admissable valye is chosen, and the pro-
cess continues. The algonlthm given in Theorem 4 has Ao "dead ends" except when
P(N) is defined. Then the Rrocess 1s kicked back up /£o the lowest level for which
an admissable value remains.

The following tables give

- ON' As written,

), and a general-

some of the quantifative results.

N ((N+1)/2)! #Baxter on-trivial Fg. c¢l, of NT
3 2 2 0 0
5 6 6 2 1
7 24 22 2 1
9 120 92 22 7
11 720 422 66 21
13 5040 * * 112
15 40320 10754 1694 456
17 * * * *

*(To be supplied later.)
loped from a permutation with

<13579111§

N = 13, namely\ll 9 1 3 7 13 5//, There is one permutidtion with N = 11 which could
probably be developed into a "lkast" counterexample.**\ For all permutation with
N < 9, and for all other permytations for 11 and 13 except the equivalence classes
and induce them, then f and

mentioned, 1f f and g commut must have a common

fixed point.

T e R Rl
10 e G THoT)
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