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ABSTRACT

A Baxter permutation of the integers 1-N(N odd)
ls a permutation P such that if P(J) 1is between P(1)
and P(1+1), than J » 1 + 1 or J < 1 depending on.the
parity (even or odd) of i. Baxter permutations were first
studied by Glen Baxter in a 1964 paper on the common
fixed points of commuting functions question. Further
results on them were obtained by Baxter and J. T. Joichi,
and in a 1967 paper we established additional properties
and described an algorithm for generating them directly.
Most recently, Chung, Graham, Hoggatt, and Kleiman have
derived an explicit formula for B(n), the number of Baxter
permutations for N = 2n-1.

In thils paper we show that Baxter permutations
have a more general significance than 1s apparent from
their origin 1in the esoterlc field of commutling functions
theory, for they arise in a very natural way 1in the study
of composition of arbitrary continuous functions on an
interval.
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‘.f Glen Baxter [1l] and Baxter and Joichi [2]
have studied a class of permutations associated with pairs
of continuous functions f, g on a closed 1nterval I

which commute under functional composition:
fleizxl)y = pifix)) for 821 x & T:

p (Their motivation was the "common fixed point" question,
which has been settled in [4] and [5].) If the set H'
of fixed points of the composite function h = gf = fg is
finite, then Baxter showed that the permutation ¢' obtalned

by restricting f to H',
o1 = lev, o':H' > H'

satisfies certain conditions and is therefore s-admissable,

in the terminology of [2]. If we consider only the set H C H'

of crossing points of h, then Baxter has shown that

¢ = £|H is a permutation of H which in [2] is called

w-admissable. In an earlier paper, we have renamed the

w-admissable permutations as Baxter permutations, and we

Q., presented an algorithm for generating them directly. In

this papér we show that these permutations have a more



general significance than is apparent from their origin \-;
in the esoteric fileld of commuting functions theory, for they
also arise 1n a very natural way in the study of composition _)

of arbitrary continuous functions on an interval. The

principal objective of this paper i1s to prove:

Main Theorem. A permutation P of the first N positive

integers 1is a Baxter permutation if and only if there are -;
continuous functions f,g:I - I such that the composite
function gf has a finite number of fixed points and the image
under f of the il crossing point of gf is the P(i)th
crossing point of fg.

Note that the requirement that f and g commute
is entirely eliminated. In fact, the commutativity require-
ment 1s not only unnecessary but overly restrictive, for
there are Baxter permutations (e.g., (1753)(264)) which
cannot be obtained from commuting functions (see Theorem 4).

The "if" part of the Main Theorem is actually
implicit in Baxter's derivation [1], if in his proof one
regards the "k" and "m" subscripts as identifying fixed
points of gf and fg respectively. However, we give a
new, geometric proof of this result. The "only if" part
then follows readily from the geometric interpretation
of the problem.

We shall give a formal definition of Baxter
permutations following Theorem 2. First we shall establish

some convenient geometric machinery. -



Definition: If I = [a,b] 1s a closed Interval and

f,g:I - I are continuous functions, let
F = {(x,y)]|y=f(x)}, G = {(x,y)]|x=g(y)}.

The set F is the graph of f, but G is the "inverse graph"
of g since we use x = g(y) instead of y = g(x); see

Figure 1. We identify the following other subsets of

{(x,y)]|f(x)>y}, 6" = {(x,y)]|gly)>x},

3|
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{(x,y) | £(x)<y}, G~ = {(x,y)]|elx)<x}.

These sets are illustrated in Figure 1 also.

Given f and g as above, denote the composite
functions as h = gf and k = fg. Let H' be the set of
fixed points of h and K' the set of fixed points of k.
We observe that f(H') = K', g(K') = H', and so both are
one-to-one. Thus H' and K' are homeomorphic, and if
one is finite, so is the other. The main advantage
obtained when studying commuting functions is that H' = K'.
(When h and k have only interior fixed points, and there

is an order-preserving homeomorphism from H' to K', 1t

can be extended to a homeomorphism u on I such that
u(K') = H'; then we are essentlally considering uf

and gu_l, whose two composites have the same set of

fixed points. But if H' and K' are infinite, we shall see

between them. )



Definition. Let HT

{x|h(x)>x}, H = {x|h(x)<x}. An ‘_)

interior point of I = [a,b] is a crossing point of h if

it is a limit point of both H' and H™. The point a is

a crossing point of h if it is a limit point of H , while

b 1s a crossing point of h if it is a 1limit point of H+.
Let H be the set of crossing polnts of h. Similarly define
+

K, K, and the set K of crossing points of k. A component

of H+ or K+ is called an up-interval (for h or k); a

component of H or K~ is called a down-interval.

We may eliminate the special definitions for the
endpoints of I by considering Ie = [a-e,b+e] with ¢ > 0
and defining f and g to be constant on [a-e,a] and [b,b+e].
Then fixed polnts and crossing points are preserved, and
the composite functions have only interior fixed points. ‘J
Thus without loss of generality we assume that the endpoints

of I are never in H' or K'.

Theorem 1. If Hx and Hy are the projections of I x I
onto first and second components respectively, and if

L' = FN G (see Figure 2), then
H' = HX(L'), K' = Hy(L'),
H = I(F.NGY), K = T, (G N P,

Proof is straightforward and is omitted. v
(Figure 3 illustrates an infinite L' whose projections

have distinct order types, Jjustifying our earlier remark.) ‘;



Corollary 1A. [Baxter] Let Zl’ Z5s and z be points of

H' such that z; < z, and f(z) 1s between f(zl) and f(z2).

If U = (21,22) is an up-interval, then z > Z53 while if U

is é down-interval, then z < Zq - A similar conclusion holds

for K' and g.

Proof: Since f(z) 1is between f(z,) and f(z,), £(z) = £(x)
for some x € U. But {(x,f(x))|xeU} € F NG if U is an
up-interval, so x < g(f(x)) = gf(z) = z. Similarly, for
points (x,f(x)) in FN G we have x > g(f(x)) = gf(z) = z.
Corollary 1A is the Baxter-Jolchi condition "y"

- S o o O

Corollary 1B. A point z is a crossing point of h if and

only if for every neighborhood U of (z,f(z)), UNTF
intersects both G+ and G°. A similar conclusion holds for

the crossing points of k.

Proof: For "only if", given a neighborhood U of (z,f(z))

we can find open sets V

x? Vy such that (z,f(z)) ¢ VXXVy L )

and £(V_) e Vy. Then F F\(VXXVyj must meet G* and G~ since
v, meets H and H™. For the "if" part, note that V x I is
a neighborhood of (z,f(z)) when V is a neighborhood of =z.
We conjecture that in fact, F intersects both G+
and G~ in each neighborhood of (z,f(z)) if and only if G

intersects both pt and F~ in each neighborhood of (z,f(z)),



but we have not proved this. This would imply that f ~u)
maps the crossing points of h onto the crossing points
of k. The difficulties arise when z is a limit point

of fixed points of h.

Definition. A point p of a set S is called isolated

if it is not a limit point of S - {p}.

Corollary 1C. f maps the set of isolated points of H'

onto the isolated points of K'.

Proof: The isoclated points of H' and K' are the images
under HX and Hy of the isolated points of L' = F M G.
Following Baxter, we observe that the isolated
fixed points of a function can be divided into three 3

classes or types. Type I points are up-crossing - the

function is below the diagonal to the left of the point
and above the dlagonal to the right, so that a Type I point
1s the right endpoint of a down-interval and the left end-

point of an up-interval. Type II consists of the down-crossing

points, with an up-interval on the left and a down-interval
on the right. The noncrossing or touching points form a
Type III. '

Theorem 2. [Baxter] An isolated fixed point z of h = gf
is an up-crossing point if and only if f(z) is an up-crossing 4

point of k = fg, and z 1s a down-crossing point of h if
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and only if f{z2) 1s 8 down-=orossinz point of k. Thus

f preserves the type of 1solated fixed points of h.

Proof. Let p = (z,f(z)) € L' = F N G; since p 1is
l1solated there is a disk D, with boundary C, centered

at p which contalns no other point of L'. Let FD be

the component of F M D contalning p and GD the component
of G M D containing p. Then FD and GD are arcs and

F, N G, = {p}. Let £~ and f* be the points on F with
least and greatest first coordinate respectively, and

let g and g+ be the polints on G, with least and greatest

D
second coordinate. Then f and f+ are the endpoints of

FD’ g~ and g+ the endpoints of GD, and all four lie on

the boundary C of D. Consider the possible arrangements

of the points f, f+, g€ 4 g+ on the circle C. We take

all directions on C counterclockwise, with angle about

p increasing. Any point of G N C on the arc from f to e
must lie in F+, while points of G M C on the arc from f+

to £~ must lle in F . Asymmetrically, on the arc from

g 4o g+ a point of F N C must be in G et cetera. If

¥ and £~ are adjacent on C then g~ and g+ are adjacent
also, and the points of G M C are both in Ft or both in

F~; similarly the points of F M C are both in G+ or both in
G~. Thus if the pairs f+, £~ and g+, g~ are adjacent on

+
C both z and f(z) are not crossing points. If f and

f~ are not adjacent, then two arrangements are possible:



¥(,;—-f+¢k\\\ — ¥{/—-fJ“(\\\ +
N N

In case 1, £~ lies in G while f' lies in G~,
so z is a down-crossing point. The point g 1lies in F+
and g+ lies in F~, so f(z) 1s a down-crossing point alsoc.
Simllarly, in case 2 the points z and f(z) are both up-
crossing points. Thus either both z and f(z) are up-crossing,
both are down-crossing or both are touching, and the
proof is complete.

Extending the "type" designations to non-isolated
points of H' appears to be feasible but not particularly
informative. Because of the possibility of H! containing
open intervals, one can have "crossings" of the diagonal
for which none of the fixed points are "crossing points”
as we have defined the term. Also, Figure 3 indicates
that the definition of classifications for the non-isolated
points of H' which would be preserved by f would not be a
straightforward matter. Thus for the rest of the paper we
restrict ourselves to composite functions which have only
isolated fixed points, that is, the cases in which H' (and
K') are finite.

When H' 1s finite, then Theorem 2 applies to each
point of H', so the image of each crossing point is a

crossing point and the image of each touching point is a

J:



touching point. If H and K are the crossing points of

h and k, then f(H) = K and g(K) = H. Up-crossing points
and down-crossing points must alternate, with the left-
most and right-most crossing points being down-crossing,
or Type II. Thus when H' is finite, H has an odd number
of elements. If we number the points of H from 1 to N
beginning with the smallest, the odd-numbered points

will be Type II and the even-numbered ones Type I. If we
similarly number the points of K in increasing order,

then f induces a permutation P on the integers J
th

o 2, a

by which the image under f of the i crossing point of

h = gf is the P(i)th crossing point of k = fg. By Theorem 2,
P maps even Integers onto even and odd integers onto odd,

and by Corollary 1A, if P(j) 1s between P(i) and P(i+1)

then j 1s elther greater than i1 + 1 or less than 1

depending on whether 1 1s even or odd. These propertiles

of P define what Baxter and Joichi called a w—-admissable

permutation [2], and what we have called a Baxter

permutation [3].

Definition. If N is odd, and Jy L i S SRR ) S - P:Jy > Iy

is a Baxter permutation (of order N) if and only if:

(1) P maps even integers onto even integers and odd
onto odd;
(2) 41f P(j) 1s between P(21) and P(21+1), then J > 21 + 1;

(3) if P(j) 1s between P(21i-1) and P(21), then j < 21 - 1.
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In the definition of w-admissable, our condition (1)
is called (a) and our conditions (2) and (3) are called
(y). In [2] there 1s also a condition (B) which for
w-admissable permutations is a trivial consequence of
() and (yv).

With this definition we obtain the following

corollary to Theorem 2, which i1s half of the Main Theorem:

Corollary 2A. [Baxter] If f,g:I - I are continuous and

h = gf has a finite number of fixed points including

N crossing points, then P:J_, -~ J., defined by P(i) = j

N
1f and only 1f the image under f of the ith crossing
point of h is the jth crossing point of k = fg, is a Baxter
permutation.

For the converse we shall prove the followilng

result:

Theorem 3. If N is odd and P:JN - JN is a Baxter permutation,

then there are continuous functions f,g:[0,N+1] -~ [0,N+1]

such that f£(1) = P(i) for each i ¢ JN and H' = H = K' = K = JN'
Proof. We give a construction for f; the same construction
produces g, if one uses p~1 instead of P. Define f(x) = P(1l)

on [0,1] and f(x) = P(N) on [N,N+1]. Since our construction
wlll produce an f (and g) such that f£([0,N+1] € [1,N], this
insures that the first interval [0,1) is an up-interval and

the last a down-interval, as is required.

J

-

C
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For all intervals (i,1+1) but the first and last,
f will be defined to be strictly between P(i) and P(i+1).
If P(i) and P(i+l) are not adjacent, then f simply inter-

polates linearly between P(i) and P(i+l):
£(1+6) = (1-68) P(1) + 6P(i+l) for 0 < 6 < 1.

We shall show that if P(i) and P(i+l) are not adjacent,

then (i1,i+1) contains no points of H' and (i,i+l) C ut

or H depending on whether i is even or odd. There are

four cases to consider, i even or odd and P(i+l) gréater

or less than P(i). The proofs are similar; we shall

consider only i even (an up-interval) and P(i1+1) < P(i)

(see Figure 4). Since P is a Baxter permutation, gf(j) > 1+l
when P(j) 1s between P(1i) and P(i+1l). Since g(y) is between
g(j) and g(j+1) when y is between j and j+1, h(x) = gf(x) > i+l > x
when xe(i,i+1l) and f(x) 1s between P(i+1l) and P(i) - 1. The
only problem is that F and G might intersect somewhere in

the square [1,i+1] x [P(i)-1,P(1i)] besides at (1,P(1)).

But f has an absolute slope on [i,i+1] greater than 1,

and g has an absolute slope on [P(i)-1,P(1)] greater than

1 since P(i+1) # P(i) - 1 implies that P~ (P(1)-1) cannot

be adjacent to P_lP(i) = 1. Thus there is a positive angle
from F to G in the square [1,i+1] x [P(1)-1,P(i)], and

F and G meet only at (i,P(i)). The other three cases are

g1l similar in that the restriction that g lie between
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P-l(j) and P_l(j+1) on (j,j+1) prevents F and G from
intersecting except in a single square, and in that
square the functions are linear with slopes greater than 1.
When P(i) and P(i+1l) are adjacent the proof is
more intricate, but stilll straightforward. We cannot
simply interpolate linearly, for that would make F and
G coincide and thus create an interval of fixed points of
h instead of an up-interval or down-interval. We shall
rely on the property that if P(i+1l) = P(i) + 1, the
intervals (i,1+1) and (P(i),P(i+l)) are the same type
(up or down), while if P(i+l) = P(i) - 1, the intervals
(1,i+1) and (P(i+1),P(i)) are of opposite type. (This

property 1s the condition (B8) of [2].) We choose a

continuous 6§ on [0,1] such that &§(0) §(1) = 0 and

0 < 6(8) < min(6,1~6) for 0 < 8 < 1, e.g., &6(8) = l—min(e,l-e).

2
There are agaln four cases to consider: 1 even or odd

(corresponding to (1,1i+1) being a down-interval or an
up-interval) and P(i+l) = P(i) # 1. With 0 < 6 < 1, we

define f on [1,i+1] as follows (see Figure 5):

type P(i+41) £(i+e) =

up P(i) + 1 P(i) + 8 + &(8)
up P(1) -1 P(1) - 6 - &§(8)
down P(i) + 1 P(1i) + 8 - §(8)
down P(1) -1 P(i) - 6 + &(9).

i
v/
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Also in Figure 5 we show as a dotted line the location

of G when g is constructed by the same rule. For 1 even,

F lies to €he right ¢f @ and sée hix) » x on (%,1#1),

while for 1 odd, F is to the left of G, h(x) < x, and

(1,i+1) 1s a down-interval. In either case H' N (i,i+1) =" g
so H' = H = J as required. The same analysis applied to

N

k = fg shows that K' = K = JN’ SO0 the proof is complete.
Figure 6 shows F and G, h, and k constructed in the proof

for the Baxter permutation (153)(24).

Corollary 3A. [Baxter-Joichi] The inverse of a Baxter

permutation is a Baxter permutation also.

Proof. Given P, bythe theorem we can construct a pair of
functions f,g which induce P. But then the pair g,f induce

P-l, which by Corollary 2A is a Baxter permutation.

gorgliapy SR, 'If P = P_l, then there are commuting continucus

funetions £,g:I + I which induce P if ané only if P 18

a Baxter permutation.

Proof: Only the "if" part remains to be proved. But if
B = P—l, the constructions of f and g specified in the
theorem yield the same function, so f and g = f commute.
By the theorem P is induced by f and g = f.

The next result shows that the connection

between Baxter permutations and commuting functions does

not extend to an equivalence.
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Theorem 4. Not all Baxter permutations can be. induced »
by commuting functions; in particular, the Baxter

permutation (1753)(264) cannot arise from commuting

functions.

Proof. To set the stage, in Figure 7 we graph the functions

which Theorem 3 constructs to induce (1753)(264). Now

assuming that there actually exist functions f',g':I > I -

which commute and for which f'|H may be represented as (1753)(264),
we may choose a homeomorphism u:I -+ [0,8] such that
u(H) = J7 and consider the functions f = uf'u-l and g = ug'u —,
which commute, map [0,8] into [0,8], and for which H = K = J
Since 5 is between f(2) = 6 and f£(3) = 1, and g(5) = 7,
we have Tegf([2,3]). But g([2,3]) € [4,8],and £([4,7]) < 6, ‘;
so in order to have 7efg([2,3]) we must have 7ef([7,8]) and
7Teg([2,3]) (which is indicated by the dotted line in Figure 8).
Similarly iegf([5,6]), so that in order to have lefg([5,6]),
we must have leg([0,1]) and 1ef([5,6]) (shown as the solid
line in Figure 8). But in order to have both 7eg([2,3])
and 1lef([5,6]), there must be additional points of inter-
section of F and G in [5,6] x [2,3] which produce additional
crossing points of fg and gf. Thus no commuting functions
can induce (1753)(264).

Next we present some results on the

s-admissable permutations introduced by Baxter and Joichi

in [2].



=

Defindtion. Let' I = [a,bl and B' = {Xl’x2""’xn} el |

such that a < X1 Xi < Xi+l’ xn < b. Avrbltrarily denote
each of the intervals (Xi’xi+l) as an up-interval or
down-interval, and let [a,xl) be an up-interval and
(xn,b] a down-interval. Then H' with the intervals so
specified 1s called an s-set. Each point of an s-set
can be assigned a type (I, II, or III) depending on the

type (up or down) of the adjacent intervals. A permutation

P:Jn > Jn is called s-admissable (relative to the s-set H')

if it satisfies:
(a) Xp (1) has the same type as Xq5
(B) A PCi+l) = E{L) #+# 1, thanm (x45%447) and
(XP(i),XP(i+l)) have the same type, while if
PLi+l) = PCL) « 1, then (Xi’xi+1) and (XP(1+1),XP(1))
have opposite type;
(y) 1f P(j) is between P(i) and P(i+l), then j > 1i+1 if
(xi,xi+l) is an up-interval and j < 1 if (xi’xi+l)
is a down-interval.
Baxter's result may be stated 1n terms of
s-admissable permutations as follows: 1let f and g
be continuous functions on I such that h = gf and k = fg
have finitely many fixed points, all interior to I. Make
H' an s-set using h to define up- and down-intervals, and
K' an s-set similarly using k. Let the permutation
P be defined by f(xi) ol TR for xieH', vy € K'. Then

P 1s s-admissable relative to H', and P-l is s-admissable

relative to K'.
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For the converse, we generalize Theorem 3 as
follows:
Theorem 5. If H' 1s an s-set and P is s-admissable, then “J
there are continuous functions f,g:I - I such that f(xi) = xP(i)
and the up-intervals, down-intervals, fixed points, and

crossing points of h = gf and k = fg agree with those

specified by H'.

Proof. Without loss of generality we may assume that

I =1[0,n+l] and H' = J,- The functions f and g are
specified exactly as in Theorem 3, interpolating linearly
except when P(i) and P(i+1l) are adjacent, in which case a
function § is used. The same arguments show that the
up-intervals and down-intervals behave as required and

that no new fixed points are created.

Corollary 5A. [Baxter-Joichi] The inverse of an s-admissable

permutation is also s-admissable.

Proof. One simply reverses the order of f and g, which
changes P to p~L,

Since analogous theorems are obtained for both
s-admissable permutations and w-admissable (Baxter)
permutations, a legitimate question is why bother making
the restriction from fixed points to crossing points, and

why should this paper treat the Baxter permutations as

the primary concern. One answer lies in the topological
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origin of the subject: the touehling points are unstable,

in that they can be removed by arbitrarily small alferations
to the functions. Thus they may be considered as
topologically inessential, and should be disregarded.
Another answer 1s that the Baxter permupations are

simpler and somehow more basic, depending as they do only

on a particular odd integer, while for s-admissable
permutations up- and down-designations must b; specified

in addition.’ It seems mathematically unsatisfactory that
the identity permutation on 2n + 1 points can be s-admissable
in 22n different ways, depending on the designation of the
intervals. Also, as is brought out in the next theorem,
each s-admissable permutation has a Baxter permutation
"skeleton" which determines most of 1its basic topological
properties.

A final interesting question on s-admissable
permutations is whether property (B) actually imposes
restrictions beyond those of (a) and (y); we have previously
observed that (B) is a trivial consequence of (a) and (y)
for Baxter permutations. In the interest of brevity we

shall only sketch the proof that for s-admlssable

permutations also, (B) follows from (a) and (y).

Theorem 6. Let H' be an s-set and P a permutation satisfying
conditions (a) and (y). Then P satisfies (B) as well

and is thus s-admissable.
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Proof. Let (X.,X,,.,) be an interval such that
—_ 177i+1

P(i+l) = P(i) * 1 and the type of the interval between

i+l
is a crossing point (B) is easily verified, so the only

Xp (1) and Xp(141) May violate (B). If either X; Or X

problem is when both x; and X;,q @re type III (touching).
Let X, and X be the crossing points on either side of Xy

with X, < X.> SO that all intervals between x, and x

2 m
have the same type as (xi,xi+l). Since all the intervals
are the same type, the points of H' N (Xl’xm) may be
divided into two sets, st ang S”, so that on S+, P(J) is
increasing, and on S°, P(J) is decreasing. Again, four
cases must be considered, depending on the interval type
and the sign of P(m) - P(L). With up-intervals and

and P(%2) > P(m), the situation is as depicted in FPigure 9.
For ieS+, P(1) < P(m), and for ieS™, P(R) > P(i) > P(m).
The point X, is Type I so the interval directly below
XP(Z) is a down-interval. Also the interval above

XP(m) is a down-interval and the interval below is an
up-interval. To have a violation of (8) for the points
in 87 there would have to be crossing points and up-intervals

bounded by touching points between xP(m) and x But

P(L)°
the crossing points would have to be to the right of Xps
while the touching points would have to be between X
and X and this would put X in the range of an up-interval,
a violation of (y). Similar arguments can be made for

S+ and the other three cases.
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In closing, we note that very recently Chung,
Graham, Hoggatt, and Kleiman [6] have succeeded in
determining B(n), the number of Baxter permutations for

a glven odd integer 2n - 1. It is given by

s = (1 (g Y () (o)
+1)°
k=1 %
MH-1212-WMB-mv W. M. Boyce
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The most complicated routine is the cbmputation of P:ON —>ON-
As written, this routine includes two explicit DO loops, for P(1) and
P(3), and a general-purpose loop which cycles the current valﬁe of P(2i+1)
for i > 1. After the choice of a value for P(2i+1), the Mj(2i+3) are
compﬁted and a vector of admissable values for P(2i+3) established. Then
the ieast admissable value is chosen, and the process continues. The
algorithm given in Theorem L has no "dead ends" except when P(N) is defined.
Then the process is kicked back up to the lowest level for which an

admissable value remains.

The follow?ng table gives some of the quantitative results.
Uy 1 1‘(1 ] 192

o o RPN ——— | 8s

% ((N+l_]§/2)'. v Ba%cter D _Rati’g C/B ';Nonp%_iyia__lll ‘_Rati'g E/C Eq.clg. of NT
3 2 25 .1 1.00 g—'-nxo 0 0
5 6 6173 1.00 | 21 | .33 1
s 2L g3l N .92 | 2 | .09 1
9 120 92 4 e el 181 9 .20 i
11 720 yo2 2N | .59 66 1 .156 21
13 5,040 2,07k 03] .l | 374 )87 |.180 e
15 40,320 10,7541 S31) | .27 1,694 |3%7) |.1575 456
17 362,880 58,202 - ol .16 9,822 |4 |.169 2,603
19 3,628,800 326,240 6717 .09 51,698 = 5¥7.1585 13,203

]

The most interesting feature of this table is the behavior of the

ratio of nontrivial Baxter permutations of order N to the total number, as
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-"’ shown in column F. If we denote this ratio by R(N), we have the suggested

relationships

R(4i-1) < R(bi+l)
R(L4i-1) < R(L4i+3)

R(L4i+1) > R(4i+5)

and it appears that the sequence (R(2i+1)} is approaching a limit L with

1585 < L < .169. R. L. Graham has suggested that perhaps
L =1/2x = .159...

‘;r since the R(4i-1) seem to be increasing more slowly than the R(4i+l) are
decreasing. A theoretical verification of these relationships would be
interesting. For unrestricted permutations the ratio of fixed-point-free
permutations is known to approach l/e with increasing N.

The counterexample found by the author was developed by analytic

techniques from a permutation with N = 13, namely L li g i g 3 ié lg .

For N = 11 there are three equivalence classes, represented by

+1357911 ¢1357911> +<1357911>

e R e e P 113175/ % o O B LR
which can possibly be developed into "smaller" counterexamples. For each
Baxter permutation with N < 9, and for each Baxter permutation for 11 and 13

except the classes just mentioned, if £ and g commute and induce it, then

‘.' | f and g must have a common fixed point.



