

A001178


Fibonacci frequency of n.
(Formerly M3207 N1298)


3



0, 4, 3, 2, 3, 1, 2, 2, 1, 2, 3, 1, 3, 2, 3, 1, 2, 1, 2, 2, 2, 2, 2, 0, 3, 3, 2, 2, 3, 1, 2, 2, 3, 2, 2, 1, 3, 2, 3, 2, 3, 2, 3, 2, 1, 2, 3, 1, 3, 2, 2, 3, 3, 2, 3, 2, 2, 3, 4, 1, 2, 2, 2, 3, 3, 1, 3, 2, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

a(A235702(n)) = 0.  Reinhard Zumkeller, Jan 15 2014
a(n) is the least nonnegative integer k such that the function iterates f: {1, 2, ...} > {1, 2, ...}, n > f(n) = A001175(n), satisfy f^[k+1](n) = f^[k](n), where f^[0] is the identity map f^[0](n) = n and f^[k+1] = f o f^[k]. See the Fulton and Morris link, where the function f is called pi and a(n)= omega(n) for n >= 2, and omega(24) should be 0. (see the Zumkeller remark on the Hannon and Morris reference)  Wolfdieter Lang, Jan 18 2015


REFERENCES

B. H. Hannon and W. L. Morris, Tables of Arithmetical Functions Related to the Fibonacci Numbers. Report ORNL4261, Oak Ridge National Laboratory, Oak Ridge, Tennessee, Jun 1968. [There is a typo in the value of a(24) given in the table on the last page.]
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
D. Fulton and W. L. Morris, On arithmetical functions related to the Fibonacci numbers, Acta Arithmetica, 16 (1969), 105110.
B. H. Hannon and W. L. Morris, Tables of Arithmetical Functions Related to the Fibonacci Numbers [Annotated and scanned copy]
Wikipedia, Pisano period


FORMULA

See a comment above and the program.


PROG

(Haskell)
a001178 = f 0 where
f j x = if x == y then j else f (j + 1) y where y = a001175 x
 Reinhard Zumkeller, Jan 15 2014


CROSSREFS

Cf. A001175, A235702.
Sequence in context: A269611 A090342 A010307 * A016501 A248912 A152062
Adjacent sequences: A001175 A001176 A001177 * A001179 A001180 A001181


KEYWORD

nonn


AUTHOR

N. J. A. Sloane.


EXTENSIONS

a(24) corrected by Reinhard Zumkeller, Jan 15 2014


STATUS

approved



