%I M1636 N0639 #97 Sep 08 2022 08:44:28
%S 1,2,6,19,61,196,629,2017,6466,20727,66441,212980,682721,2188509,
%T 7015418,22488411,72088165,231083620,740754589,2374540265,7611753682,
%U 24400004911,78215909841,250726529556,803721298537,2576384425157,8258779154250,26474089989299
%N Number of board-pile polyominoes with n cells.
%C The inverse binomial transform is 1,1,3,6,..., i.e., the unsigned version of A077926. - _R. J. Mathar_, May 15 2008
%C a(n+1)/a(n) tends to a limit which is equal to the largest real root of the denominator of the g.f., 3.20556943040... = A246773 . - _Robert G. Wilson v_, Feb 01 2015
%D W. F. Lunnon, Counting polyominoes, pp. 347-372 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D R. P. Stanley, Enumerative Combinatorics I, p. 259.
%H T. D. Noe, <a href="/A001169/b001169.txt">Table of n, a(n) for n = 1..200</a>
%H I. G. Enting and A. J. Guttmann, <a href="http://dx.doi.org/10.1007/BF01112757">On the area of square lattice polygons</a>, J. Statist. Phys., 58 (1990), 475-484.
%H P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/books.html">Analytic Combinatorics</a>, 2009; see page 367
%H Dean Hickerson, <a href="http://www.cs.uwaterloo.ca/journals/JIS/HICK2/chcp.html">Counting Horizontally Convex Polyominoes</a>, J. Integer Sequences, Vol. 2 (1999), #99.1.8.
%H David A. Klarner, <a href="http://www.fq.math.ca/Scanned/3-1/klarner.pdf">Some results concerning polyominoes</a>, Fibonacci Quarterly 3 (1965), 9-20.
%H David A. Klarner, <a href="http://dx.doi.org/10.1016/S0021-9800(69)80100-6">The number of graded partially ordered sets</a>, Journal of Combinatorial Theory, vol.6, no.1, pp.12-19, (January-1969).
%H Todd Mullen, <a href="https://dalspace.library.dal.ca/bitstream/handle/10222/78458/Mullen-Todd-PhD-MATH-April-2020.pdf">On Variants of Diffusion</a>, Dalhousie University (Halifax, NS Canada, 2020).
%H R. Pemantle and M. C. Wilson, <a href="http://dx.doi.org/10.1137/050643866">Twenty Combinatorial Examples of Asymptotics Derived from Multivariate Generating Functions, SIAM Rev., 50 (2008), no. 2, 199-272. See p. 239
%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992
%H G. Pólya, <a href="http://dx.doi.org/10.1016/S0021-9800(69)80113-4">On the number of certain lattice polygons</a>, J. Combinatorial Theory 6 1969 102--105. MR0236031 (38 #4329) - From _N. J. A. Sloane_, Jun 05 2012
%H K. A. Van'kov, V. M. Zhuravlyov, <a href="https://www.mccme.ru/free-books/matpros/pdf/mp-22.pdf#page=127">Regular tilings and generating functions</a>, Mat. Pros. Ser. 3, issue 22, 2018 (127-157) [in Russian]. See page 128. - _N. J. A. Sloane_, Jan 09 2019
%H Kirill Vankov, Valerii Zhuravlev, <a href="https://hal.archives-ouvertes.fr/hal-02535947">Regular and semiregular (uniform) tilings and generating functions</a>, hal-02535947, [math.CO], 2020.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Column-ConvexPolyomino.html">Column-Convex Polyomino.</a>
%H D. Zeilberger, <a href="http://arXiv.org/abs/math.CO/9801016">Automated counting of LEGO towers</a>, arXiv:math/9801016 [math.CO], 1998.
%H V. M. Zhuravlev, <a href="http://www.mccme.ru/free-books/matpros/mph.pdf">Horizontally-convex polyiamonds and their generating functions</a>, Mat. Pros. 17 (2013), 107-129 (in Russian).
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5, -7, 4).
%F G.f.: x*(1-x)^3/(1 - 5*x + 7*x^2 - 4*x^3). - _Simon Plouffe_ in his 1992 dissertation
%F a(n) = 5*a(n-1) - 7*a(n-2) + 4*a(n-3) for n >= 5.
%F a(n) = sum(k=0..n-1, sum(i=0..k, binomial(k,i)*binomial(n+2*i-1,4*k-i))). - _Emanuele Munarini_, May 19 2011
%F a(n) = a(n-1) + A049219(n) + A049220(n) for n >= 2.
%F Row sums of A273895. - _Michael Somos_, Jun 02 2016
%t a[n_] := a[n] = If[n<5, {1, 2, 6, 19}[[n]], 5a[n-1] - 7a[n-2] + 4a[n-3]]; Table[a[n], {n, 30}]
%t Join[{1},LinearRecurrence[{5,-7,4},{2,6,19},40]] (* _Harvey P. Dale_, Sep 11 2014 *)
%t Rest@ CoefficientList[ Series[x (1 - x)^3/(1 - 5x + 7x^2 - 4x^3), {x, 0, 28}], x] (* _Robert G. Wilson v_, Feb 01 2015 *)
%o (PARI) {a(n) = if( n<0, 0, polcoeff( x * (1 - x)^3 / (1 - 5*x + 7*x^2 - 4*x^3) + x * O(x^n), n))}; /* _Michael Somos_, Jun 02 2016 */
%o (Maxima) makelist(sum(sum(binomial(k,i)*binomial(n+2*i-1,4*k-i),i,0,k),k,0,n-1),n,0,24); /* _Emanuele Munarini_, May 19 2011 */
%o (Magma) I:=[1,2,6,19,61]; [n le 5 select I[n] else 5*Self(n-1)-7*Self(n-2)+4*Self(n-3): n in [1..30]]; // _Vincenzo Librandi_, Feb 15 2015
%Y Cf. A049219, A049220 (partial sums), A049221, A049222, A246773, A273895.
%K nonn,nice,easy
%O 1,2
%A _N. J. A. Sloane_
%E More terms from _Dean Hickerson_