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PARTITIONS IN SQUARES

JAN BOHMAN, CARL-ERIK FROBERG and HANS RIESEL

Abstract.

In this paper we study primarily partitions in different squares. A complete
characterization of the least number of terms needed in different cases is given. The
asymptotic number of partitions in squares and in different squares is deduced by use of
numerical results obtained from extensive computer runs. Some other related problems are
also discussed.

Introduction.

We consider a set T={t,,t,,...} where ¢; are integers and 1 <, <t, <t;<....
A partition of the positive integer N is then delined as a representation N =3, n;,
with integer coefflicients n,=0. Compositions are partitions where different
permutations are also counted. Further rules may be added, but we restrict
ourselves to the case when repetitions are not allowed (i.e. n,=0 or 1). We denote
by p(n) and q(n) the number of partitions with and without repetition, and by r(n)
and s(n) the number of compositions with and without repetition. Introducing
the generating functions P(x)=>p(n)x", Q(x), R(x) and S(x) being defined
analogously, we have:

g’ (1) Px) =[] 1—=xH""

teT

(2) Q00 = [[ (1+x".

teT

From the simple observation that the number of compositions starting with r, is
r(n—t,) we get

3 r(n) = Y rin—1t)

with summation over k as long as n—1t,20; r(0)=1. The characteristic equation
of (3) is

(4) e = 1—pr—p2—. . =0, p=74"".

Comparing coefficients we obtain

(5) R(x) = @(x)"".

The real roots of (4) lie in the interval — 1 <u <1 and we find the solution of (3):
(6) rin) =) Cu " Co= —[pe' (17"
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In general, the contributions from the non-real roots are small and appear as
noise.
We refrain from discussing the functions s(n) and S(x).

Partitions in squares.

From now on we define t,=n% n=1,2,3,.... We then have the generating
function
(7) P(x) = {(1=x)(1 =xH(1=x"...0 7" = T+ x+x24+x>+2x" +2x° +

2x8 4+ 2x7 4 3x8 44X 4 4x O 4 4x M 45X 24 6x 34 L

The coefficients p(n) have been computed up to n=25,000. In Table I we give
some values of p(n) and g(n); as can be expected the values of p(n) grow much
faster than ¢(n) for increasing values of n.

Table 1. Number of quadratic partitions with and without repetition.

n p(n) q(n)

100 1116 3

500 9653806 109
1000 3.9984684 ( 9) 1269
2000 9.7316068 (12) 27526
5000 9.8285000 (18) 8835288
10000 1.0659872 (25)  3.2960898 (9)
25000  4.1689369 (35)  1.1491431 (14)

Assuming an asymptotic representation of the form p(n)~Cn~*exp (fn?) we
found that y must be very close to 1/3. Taking y=1/3 exactly we obtain f
=3.30716, «=1.16022 and C~'=18.79656. The values of ¢(n) [luctuate
considerably and we have only been able to establish that the main lactor in ¢(n)
seems (o be of the order exp (dx!/3) with § approximately equal to 1.4.

Partitions in different squares.

Our primary task will be to distribute the natural numbers into different classes
C,, C,, Cy, C4, Cs, Cg and C. These classes are defined as follows. A number
ne Cy k=1(1)6, il there exists a representation of n as the sum of k different
squares, but no representation using less than & different squares. The exceptional
class Cg contains the numbers which cannot be written as a sum of different
squares at all. We introduce the generating function

0(x,2) = (14+2) (T +z2xH(1 +2xX) (1 4+2x1). .. = T+z(x+x*+x°+ .. )
22 x0T 2025 26 a2 264 20 )

F2 X )+ )+ = 14+20,(x)+220, () + . ..
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We see that e.g. x*° is present in both Q,(x) and Q,(x), and that x2° is present in
both Q,(x) and Q5(x). From the definition it is clear that 25 e C, and 26 € C,.
We found that g(n)=0 in 31 cases when n<128. We first prove the following

THEOREM. Assuming that every integer n in the interval sEn<st, where t=s
+[)/ (s+2)+2]% s> 0, can be written as a sum of unequal squares, then all integers
25 have the same property. Here, as usual, [ -] denotes the integer part.

Proor. Define u=[(t—s+1)/2]°+s and consider the interval t <m<u. Then
every integer m in this interval can be written x2+n where x=[]/(m—s)] with
s<n=t (implying that n can be partitioned) because
) n=m=x*2m—(/(m—s) =5,

2) n=m=x*<m—(/(m=s)—1)> = s—1+2]/(m—ys)

o5

Further x> >n since

I
-

X?—n =2x*—m = 2[)/(m—s)]*—m > 2|/ (m=s)—1)* —m

= (m=9)=2=5=2 > (/(t—5)—2P2—5-2 = 0.

In this way a partition in the smaller interval implies a partition in the larger
interval. It is easy to see that this larger interval meets the requirements of the
theorem. Hence we have a guarantee that a new step can be taken, and so the
whole process can be repeated indefinitely.

CorOLLARY. All integers > 128 can be written as sums of unequal squares.

RemaRrk. Using a similar technique we can prove that every large integer can
be written as a sum of unequal pth powers, if there is a sufficiently large interval in
which every integer has this property.

We also found empirically that the class C, only contains two numbers, viz. 124
and 188  (124=1°+22+34+524+62+7%; 188=124224+32452472410%).
Hence, in our computations we could limit ourselves to computing Q,, i=1(1)5.
Calculations carried up to n= 100,000 show that all numbers > 188 can be written
as sums of not more than 5 diflerent squares. The results obtained are displayed
below.

Cp = 12,3.6,7,8,11,12,15,18,19,22,23,24,27,28,31,32. 33,
43,44,47,48,60,67,72,76,92,96,108,112, 128}

Co = {124,188
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C, = {n| n=m? m=>0}
C, = {n| n=a*+b% a,b>0, a%b, n+c?}

C, = (A4, nz20}; 4 = 51,57,99,102,123,163,177,187,
267,627 and 8k+7, k = 4,7,8,9,10,11, and k = 13.

Cs={A4 nzml; A =23,611,18,19,22,27,33,43,67
and 8k+7, k = 0,1,2,3,5,6,12
(ile. 4 = 2,3,6,7,11,15,18,19,22,23,27,31,33,43,47,
55,67,103); m is given in the table below.

A

2367 111518 19 22 23 27 31 33 43 47 55 67 103
m 433

3 2222122211201 0
Gy

Il

] n>0,n¢C,,CpCy Cs,Co,Cg} .

Adding the values of m above we obtain 33, corresponding to the 31 elements in
Cg and the 2 elements in C,.

The number of elements in N<n=<4N (N =188) belonging to the classes C,
— C5 1s approximately (total number=3N):

C, /N

C, KN(4/|/(In4N)—1/)/In N) (according to Ramanujan [2] K=0.764 ...)
C, N2

C, 18 (exactly)

C; the rest.

In the interval 250 <n <1000 there are 16, 211, 377, 128 and 18 numbers
belonging to C,, C,, C5, C, and Cs respectively, while the theoretical results are
16, 209, 382, 125 and 18. The amount of numbers belonging to C, decreases very
slowly and is still 5 per cent when N=10°°(!),

The structure A-4" of the numbers in C, can be explained to some extent if we
remember the well-known theorem established by Jacobi: The number r,(n) of
representations of an integer n as a sum of four squares is equal to 8 times or 24
times the sum of the odd divisors of n depending on n being odd or even.

Note that 0, £n, and permutations are all allowed as well as several identical
squares. This means that the number of representations is counted in accordance
with the generating function

o 4 X
( ¥ x"z> = Y ry(n)x".

k= —co =0

If n is even, then the number of representations is the same for 4n, and since a’+b?
+£2+d*=n has an exact counterpart in (2a)®+ (2b)* + (2¢)* + (2d)* =4n, the
number of partitions in 4 different squares must be the same in both cases.
However, we refrain from a more thorough discussion.
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Compositions in squares.
The difference equation to be satisfied is
rm) =rin=1)+r(n—4H+r(n—9+..., r(0) = 1
with the characteristic equation
ppt o =1 (u=aTY .

The only real solution is p=0.7053466815 or i=1.417742546 giving r(n)~ CA"

with C=(u+4p*+9u°+ ...)" ' =0.4654211338. Finally, the generating function
is

(I=x—x*—x—x"— . )70 = T4+ x+x2+x>+2x* +3x5 +4x5 + 5x7 + 7x8

G (¢
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