login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001100 Triangle read by rows: T(n,k) = number of permutations of length n with exactly k rising or falling successions, for n >= 1, 0 <= k <= n-1. 13
1, 0, 2, 0, 4, 2, 2, 10, 10, 2, 14, 40, 48, 16, 2, 90, 230, 256, 120, 22, 2, 646, 1580, 1670, 888, 226, 28, 2, 5242, 12434, 12846, 7198, 2198, 366, 34, 2, 47622, 110320, 112820, 64968, 22120, 4448, 540, 40, 2, 479306, 1090270, 1108612, 650644, 236968, 54304, 7900, 748, 46, 2 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Number of permutations of 12...n such that exactly k of the following occur: 12, 23, ..., (n-1)n, 21, 32, ..., n(n-1).

REFERENCES

F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.

J. Riordan, A recurrence for permutations without rising or falling successions. Ann. Math. Statist. 36 (1965), 708-710.

David Sankoff and Lani Haque, Power Boosts for Cluster Tests, in Comparative Genomics, Lecture Notes in Computer Science, Volume 3678/2005, Springer-Verlag.

LINKS

Alois P. Heinz, Rows n = 1..141, flattened

FORMULA

Let T{n, k} = number of permutations of 12...n with exactly k rising or falling successions. Let S[n](t) = Sum_{k >= 0} T{n, k}*t^k. Then S[0] = 1; S[1] = 1; S[2] = 2*t; S[3] = 4*t+2*t^2; for n >= 4, S[n] = (n+1-t)*S[n-1] - (1-t)*(n-2+3*t)*S[n-2] - (1-t)^2*(n-5+t)*S[n-3] + (1-t)^3*(n-3)*S[n-4].

EXAMPLE

Triangle T(n,k) begins:

    1;

    0,    2;

    0,    4,    2;

    2,   10,   10,   2;

   14,   40,   48,  16,   2;

   90,  230,  256, 120,  22,  2;

  646, 1580, 1670, 888, 226, 28, 2;

MAPLE

S:= proc(n) option remember; `if`(n<4, [1, 1, 2*t, 4*t+2*t^2]

       [n+1], expand((n+1-t)*S(n-1) -(1-t)*(n-2+3*t)*S(n-2)

       -(1-t)^2*(n-5+t)*S(n-3) +(1-t)^3*(n-3)*S(n-4)))

    end:

T:= (n, k)-> coeff(S(n), t, k):

seq(seq(T(n, k), k=0..n-1), n=1..10);  # Alois P. Heinz, Jan 11 2013

MATHEMATICA

s[n_] := s[n] = If[n < 4, {1, 1, 2*t, 4*t + 2*t^2}[[n + 1]], Expand[(n + 1 - t)*s[n - 1] - (1 - t)*(n - 2 + 3*t)*s[n - 2] - (1 - t)^2*(n - 5 + t)*s[n - 3] + (1 - t)^3*(n - 3)* s[n - 4]]]; t[n_, k_] := Ceiling[Coefficient[s[n], t, k]]; Flatten[ Table[ Table[t[n, k], {k, 0, n - 1}], {n, 1, 10}]] (* Jean-Fran├žois Alcover, Jan 25 2013, translated from Alois P. Heinz's Maple program *)

CROSSREFS

Diagonals give A002464, A086852, A086853, A086854, A086955.

Triangle in A086856 multiplied by 2. Cf. A010028.

Cf. A322294, A322295, A322296.

Sequence in context: A271230 A112824 A195133 * A218831 A242595 A136265

Adjacent sequences:  A001097 A001098 A001099 * A001101 A001102 A001103

KEYWORD

tabl,nonn,changed

AUTHOR

N. J. A. Sloane, Aug 19 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 21:01 EST 2018. Contains 318154 sequences. (Running on oeis4.)