login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001091 a(n) = 8a(n-1) - a(n-2); a(0) = 1, a(1) = 4.
(Formerly M3637 N1479)
18

%I M3637 N1479

%S 1,4,31,244,1921,15124,119071,937444,7380481,58106404,457470751,

%T 3601659604,28355806081,223244789044,1757602506271,13837575261124,

%U 108942999582721,857706421400644,6752708371622431,53163960551578804

%N a(n) = 8a(n-1) - a(n-2); a(0) = 1, a(1) = 4.

%C a(15+30k)-1 and a(15+30k)+1 are consecutive odd powerful numbers. The first pair is 13837575261124+-1. See A076445. - _T. D. Noe_, May 04 2006

%C Numbers n such that 15*(n^2-1) is a square. - _Vincenzo Librandi_, Jul 08 2010

%C This sequence gives the values of x in solutions of the Diophantine equation x^2 - 15*y^2 = 1. The corresponding y values are in A001090. - _Vincenzo Librandi_, Nov 12 2010 [edited by _Jon E. Schoenfield_, May 04 2014]

%C The square root of 15*(n^2-1) at those numbers = 5 * A136325. - _Richard R. Forberg_, Nov 22 2013

%C For the above Diophantine equation x^2-15*y^2=1, x + y = A105426. - _Richard R. Forberg_, Nov 22 2013

%C a(n) solves for x in the Diophantine equation floor(3*x^2/5)= y^2. The corresponding y solutions are provided by A136325(n). x + y = A070997(n). - _Richard R. Forberg_, Nov 22 2013

%C Except for the first term, values of x (or y) in the solutions to x^2 - 8xy + y^2 + 15 = 0. - _Colin Barker_, Feb 05 2014

%D Bastida, Julio R. Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163--166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009) - From _N. J. A. Sloane_, May 30 2012

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A001091/b001091.txt">Table of n, a(n) for n=0..200</a>

%H H. Brocard, <a href="http://resolver.sub.uni-goettingen.de/purl?PPN598948236_0004/DMDLOG_0053">Notes élémentaires sur le problème de Peel [sic]</a>, Nouvelle Correspondance Mathématique, 4 (1878), 337-343.

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H Simon Plouffe, <a href="http://www.lacim.uqam.ca/%7Eplouffe/articles/MasterThesis.pdf">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992.

%H Simon Plouffe, <a href="http://www.lacim.uqam.ca/%7Eplouffe/articles/FonctionsGeneratrices.pdf">1031 Generating Functions and Conjectures</a>, Université du Québec à Montréal, 1992.

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (8,-1)

%F For all elements x of the sequence, 15*x^2 -15 is a square. Lim. n -> Inf. a(n)/a(n-1) = 4 + sqrt(15). - _Gregory V. Richardson_, Oct 11 2002

%F a(n) = ((4+sqrt(15))^n + (4-sqrt(15))^n)/2.

%F a(n) = 4*S(n-1, 8)-S(n-2, 8) = (S(n, 8)-S(n-2, 8))/2, n>=1; S(n, x) := U(n, x/2) with Chebyshev's polynomials of the 2nd kind, A049310, with S(-1, x) := 0 and S(-2, x) := -1.

%F a(n) = T(n, 4) with Chebyshev's polynomials of the first kind; see A053120.

%F G.f.: (1-4*x)/(1-8*x+x^2). a(n)=a(-n). - _Ralf Stephan_, Jun 06 2005

%F a(n)a(n+3) - a(n+1)a(n+2) = 120. - _Ralf Stephan_, Jun 06 2005

%p A001091:=-(-1+4*z)/(1-8*z+z**2); # conjectured by _Simon Plouffe_ in his 1992 dissertation

%t LinearRecurrence[{8,-1},{1,4},20] (* _Harvey P. Dale_, May 01 2014 *)

%o (PARI) a(n)=subst(poltchebi(n),x,4)

%o (PARI) a(n)=n=abs(n); polcoeff((1-4*x)/(1-8*x+x^2)+x*O(x^n),n) /* _Michael Somos_, Jun 07 2005 */

%Y a(n) = sqrt{15*[(A001090(n))^2]+1}.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_

%E More terms from Larry Reeves (larryr(AT)acm.org), Aug 25 2000

%E Chebyshev comments from _Wolfdieter Lang_, Oct 31 2002

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 21:14 EST 2016. Contains 278745 sequences.