login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001082 Generalized octagonal numbers: n*(3*n-2), n=0, +- 1, +- 2, +-3.... 93

%I

%S 0,1,5,8,16,21,33,40,56,65,85,96,120,133,161,176,208,225,261,280,320,

%T 341,385,408,456,481,533,560,616,645,705,736,800,833,901,936,1008,

%U 1045,1121,1160,1240,1281,1365,1408,1496,1541,1633,1680,1776,1825,1925,1976

%N Generalized octagonal numbers: n*(3*n-2), n=0, +- 1, +- 2, +-3....

%C Numbers of the form 3*n^2+2*n, n an integer.

%C 3*a(n) + 1 is a perfect square.

%C a(n) mod 10 belongs to a periodic sequence: 0, 1, 5, 8, 6, 1, 3, 0, 6, 5, 5, 6, 0, 3, 1, 6, 8, 5, 1, 0. [Mohamed Bouhamida (bhmd95(AT)yahoo.fr), Sep 04 2009]

%C A089801 is the characteristic function. - _R. J. Mathar_, Oct 07 2011.

%C Exponents of powers of q in one form of the quintuple product identity. (-x^-2 + 1) * q^0 + (x^-3 - x) * q^1 + (-x^-5 + x^3) * q^5 + (x^-6 - x^4) * q^8 + ... = Sum_n q^(3*n^2 + 2*n) * (x^(3*n) - x^(-3*n - 2)) = Product_{k>0} (1 - x * q^(2*k - 1)) * (1 - x^-1 * q^(2*k - 1)) * (1 - q^(2*k)) * (1 - x^2 * q^(4*k)) * (1 - x^-2 * q^(4*k - 4)). - _Michael Somos_, Dec 21 2011

%C The offset 0 would also be valid here, all other entries of generalized k-gonal numbers have offset 0 (see cross references). - _Omar E. Pol_, Jan 12 2013

%C Also, x values of the Diophantine equation x(x+3)+(x+1)(x+2) = (x+y)^2+(x-y)^2. [_Bruno Berselli_, Mar 29 2013]

%C Numbers n such that sum_{i=1..n} 2*i*(n-i)/n is an integer (the addend is the harmonic mean of i and n-i). - _Wesley Ivan Hurt_, Sep 14 2014

%H T. D. Noe, <a href="/A001082/b001082.txt">Table of n, a(n) for n = 1..1000</a>

%H R. Stephan, <a href="http://www.ark.in-berlin.de/A001082.ps">On the solutions to 'px+1 is square'</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/QuintupleProductIdentity.html">Quintuple Product Identity</a>

%H <a href="/index/Rea#recLCC">Index to sequences with linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1).

%F a(n) = n*(3*n-4)/4 if n even, (n-1)*(3*n+1)/4 if n odd.

%F a(n) = n^2 - n - floor(n/2)^2.

%F G.f.: sum_{n=0..inf} (-1)^n*[x^(a(2n+1)) + x^(a(2n+2))] = 1/1 - (x-x^2)/1 - (x^2-x^4)/1 - (x^3-x^6)/1 -...- (x^k - x^(2k))/1 -... (continued fraction where k=1..inf). - _Paul D. Hanna_, Aug 16 2002

%F a(n+1) = ceiling(n/2)^2 + A046092(floor(n/2)).

%F a(2n) = n(3n-2) = A000567(n), a(2n+1) = n(3n+2) = A045944(n). - Mohamed Bouhamida (bhmd95(AT)yahoo.fr), Nov 06 2007

%F O.g.f.: -x^2*(x^2+4*x+1)/((x-1)^3*(1+x)^2). - _R. J. Mathar_, Apr 15 2008

%F a(n) = n^2+n-ceiling(n/2)^2 with offset 0 and a(0)=0. [_Gary Detlefs_, Feb 23 2010]

%p seq(n^2+n-ceil(n/2)^2, n=0..51); # _Gary Detlefs_, Feb 23 2010

%t Table[If[EvenQ[n], n*(3*n-4)/4, (n-1) (3*n+1)/4], {n, 100}]

%o (PARI) {a(n) = if( n%2, (n-1) * (3*n + 1) / 4, n * (3*n - 4) / 4)}

%o (Haskell)

%o a001082 n = a001082_list !! n

%o a001082_list = scanl (+) 0 $ tail a022998_list

%o -- _Reinhard Zumkeller_, Mar 31 2012

%o (MAGMA) [n^2 - n - Floor(n/2)^2 : n in [1..50]]; // _Wesley Ivan Hurt_, Sep 14 2014

%Y Partial sums of A022998.

%Y Cf. A000567, A005563, A085785, A089801, A245031.

%Y Column 4 of A195152.

%Y Generalized k-gonal numbers, k>=5: A001318, A000217, A085787, this sequence, A118277, A074377, A195160, A195162, A195313, A195818.

%K nonn,easy

%O 1,3

%A _N. J. A. Sloane_ and _Tom Duff_

%E More terms from _James A. Sellers_, Sep 19 2000

%E New sequence name from _Matthew Vandermast_, Apr 10 2003

%E More terms from _Ralf Stephan_, Jul 25 2003

%E Editorial changes by _N. J. A. Sloane_, Feb 03 2012

%E Edited by _Omar E. Pol_, Jun 09 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 28 11:50 EST 2014. Contains 250346 sequences.