login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001082 Generalized octagonal numbers: n*(3*n-2), n=0, +- 1, +- 2, +-3.... 89

%I

%S 0,1,5,8,16,21,33,40,56,65,85,96,120,133,161,176,208,225,261,280,320,

%T 341,385,408,456,481,533,560,616,645,705,736,800,833,901,936,1008,

%U 1045,1121,1160,1240,1281,1365,1408,1496,1541,1633,1680,1776,1825,1925,1976

%N Generalized octagonal numbers: n*(3*n-2), n=0, +- 1, +- 2, +-3....

%C Numbers of the form 3*n^2+2*n, n an integer.

%C 3*a(n) + 1 is a perfect square.

%C a(n) mod 10 belongs to a periodic sequence: 0, 1, 5, 8, 6, 1, 3, 0, 6, 5, 5, 6, 0, 3, 1, 6, 8, 5, 1, 0. [Mohamed Bouhamida (bhmd95(AT)yahoo.fr), Sep 04 2009]

%C A089801 is the characteristic function. - _R. J. Mathar_, Oct 07 2011.

%C Exponents of powers of q in one form of the quintuple product identity. (-x^-2 + 1) * q^0 + (x^-3 - x) * q^1 + (-x^-5 + x^3) * q^5 + (x^-6 - x^4) * q^8 + ... = Sum_n q^(3*n^2 + 2*n) * (x^(3*n) - x^(-3*n - 2)) = Product_{k>0} (1 - x * q^(2*k - 1)) * (1 - x^-1 * q^(2*k - 1)) * (1 - q^(2*k)) * (1 - x^2 * q^(4*k)) * (1 - x^-2 * q^(4*k - 4)). - _Michael Somos_, Dec 21 2011

%C The offset 0 would also be valid here, all other entries of generalized k-gonal numbers have offset 0 (see cross references). - _Omar E. Pol_, Jan 12 2013

%C Also, x values of the Diophantine equation x(x+3)+(x+1)(x+2) = (x+y)^2+(x-y)^2. [_Bruno Berselli_, Mar 29 2013]

%H T. D. Noe, <a href="/A001082/b001082.txt">Table of n, a(n) for n = 1..1000</a>

%H R. Stephan, <a href="http://www.ark.in-berlin.de/A001082.ps">On the solutions to 'px+1 is square'</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/QuintupleProductIdentity.html">Quintuple Product Identity</a>

%H <a href="/index/Rea#recLCC">Index to sequences with linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1).

%F a(n) = n*(3*n-4)/4 if n even, (n-1)*(3*n+1)/4 if n odd.

%F a(n) = n^2 - n - floor(n/2)^2.

%F G.f.: sum_{n=0..inf} (-1)^n*[x^(a(2n+1)) + x^(a(2n+2))] = 1/1 - (x-x^2)/1 - (x^2-x^4)/1 - (x^3-x^6)/1 -...- (x^k - x^(2k))/1 -... (continued fraction where k=1..inf). - _Paul D. Hanna_, Aug 16 2002

%F a(n+1) = ceiling(n/2)^2+A046092(floor(n/2)).

%F a(2n) = n(3n-2) = A000567(n), a(2n+1) = n(3n+2) = A045944(n). - Mohamed Bouhamida (bhmd95(AT)yahoo.fr), Nov 06 2007

%F O.g.f.: -x^2*(x^2+4*x+1)/((x-1)^3*(1+x)^2). - _R. J. Mathar_, Apr 15 2008

%F a(n) = n^2+n-ceiling(n/2)^2 with offset 0 and a(0)=0 [_Gary Detlefs_, Feb 23 2010]

%p seq(n^2+n-ceil(n/2)^2,n=0..51); [_Gary Detlefs_, Feb 23 2010]

%t Table[If[EvenQ[n], n*(3*n-4)/4, (n-1) (3*n+1)/4], {n, 100}]

%o (PARI) {a(n) = if( n%2, (n-1) * (3*n + 1) / 4, n * (3*n - 4) / 4)}

%o (Haskell)

%o a001082 n = a001082_list !! n

%o a001082_list = scanl (+) 0 $ tail a022998_list

%o -- _Reinhard Zumkeller_, Mar 31 2012

%Y Partial sums of A022998.

%Y Cf. A000567, A005563, A085785, A089801.

%Y Column 4 of A195152.

%Y Generalized k-gonal numbers, k>=5: A001318, A000217, A085787, this sequence, A118277, A074377, A195160, A195162, A195313, A195818.

%K nonn,easy

%O 1,3

%A _N. J. A. Sloane_ and Tom Duff

%E More terms from _James A. Sellers_, Sep 19 2000

%E New sequence name from Matthew Vandermast, Apr 10 2003

%E More terms from _Ralf Stephan_, Jul 25 2003

%E Editorial changes by _N. J. A. Sloane_, Feb 03 2012

%E Edited by _Omar E. Pol_, Jun 09 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 16 11:56 EDT 2014. Contains 240591 sequences.