Theorem: Define
\[f(n) = \sigma(n) - n \]
where \(\sigma(n) \) is the sum of all divisors of \(n \) except \(n \) itself.
Then the range of \(n \) has density at most \(47/48 \).

Notation: \(a*b \) is multiplication, \(a**c \) is exponentiation.

Proof: consider integers \(n \) such that \(f(n) \) is divisible by 12,
and \(f(n)<N \), sorted by the residue \(n \mod 12 = \sigma(n) \mod 12 \).

\[n \mod 12 = 0 \]
Then \(\sigma(n)/n \geq (7/4)(4/3) = 7/3 \)
\(N > \sigma(n)-n > 4n/3 \)
\(n < 3N/4 \), \(n \) divisible by 12.

The number of such \(n \) is at most \((1/12)(3N/4) = N/16 \).

\[n \mod 12 = 2, 6, \text{ or } 10. \]
Since each odd prime occurring to an odd power contributes
at least a factor of 2 to \(\sigma(n) \), and \(\sigma(n) \) has only
one factor of 2, we have \(n = 2*p*(s**2) \), where \(p \) is a prime.
Such numbers have density 0.
Also \(N > \sigma(n)-n > (3/2)n - n = n/2 \), so \(n<2N \).
So the number of such \(n \) is \(o(2N) = o(N) \).

\[n \mod 12 = 4 \text{ or } 8. \]
No primes of the form \(6k-1 \) occur to an odd power in \(n \)
(or else 3 would divide \(\sigma(n) \)). Such \(n \) have 0 density.
Further, \(N > \sigma(n)-n > (7/4)n - n = 3n/4 \), so \(n<4N/3 \).
Again the number of such \(n \) is \(o(4N/3) = o(N) \).

\[n \mod 12 = 1, 5, 7, \text{ or } 11. \]
No odd primes occur to an odd power (and 2 doesn’t occur at all).
\(n = s**2 \). Further no prime \(p \) of the form \(6k+1 \) occurs to
the FIRST power in \(s \). (If \(s \) is divisible by such \(p \), then it’s
divisible by at least \(p**2 \).) \(N>s \). The number of \(s<N \) of
with no prime \(p=6k+1 \) occurring with exponent exactly 1, is
\(o(N) \).

\[n \mod 12 = 3 \text{ or } 9. \]
\(n \) is divisible by 3, so \(N > \sigma(n)-n > (4/3)n - n = n/3 \),
so \(n<3N \). No prime occurs to odd power, so the number of
such \(n \) is less than \(\sqrt{3N} = o(N) \).

Summing, the numbers of integers less than \(N \), divisible by 12
which are \(f(n) \) for some \(n \), is at most \(N/16 + o(N) \),
while there are \(N/12 \) integers less than \(N \) divisible by 12.
So there are at least \(N/48 \) integers less than \(N \), divisible by 12,
outside the range of \(f \), and the density of the range of \(f \) is at most
\(1 - ((1/12) - (1/16)) = 47/48 \).

Don Coppersmith, COPER@YKTVMV