login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000993 Number of distinct quadratic residues mod 10^n = number of distinct n-digit endings of base 10 squares.
(Formerly M4155 N1727)
4
1, 6, 22, 159, 1044, 9121, 78132, 748719, 7161484, 70800861, 699869892, 6978353179, 69580078524, 695292156201, 6947835288052, 69465637212039, 694529215501164, 6944974263529141, 69446563720728612, 694457689921141299, 6944497426351013404 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

Albert H. Beiler, Recreations in the Theory of Numbers, Dover Publ., 2nd Ed., NY, 1966, Chapter XV, 'On The Square', p. 139.

W. Penney, On the final digits of squares, Amer. Math. Monthly, 67 (1960), 1000-1002.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for sequences related to final digits of numbers

FORMULA

a(n) = (83 + 27*(-1)^n + 9*2^(1 + n) + (-1)^n*2^(2 + n) + 9*5^(2 + n) + (-1)^n*5^(2 + n) + 2^(1 + n)*5^(2 + n))/ 72.

a(n+8) = 130 a(n+6) - 3129 a(n+4) + 13000 a(n+2) - 10000 a(n) for n >= 1

G.f.: (1 - 4*x - 68*x^2 + 59*x^3 + 723*x^4 - 5*x^5 - 1700*x^6 - 500*x^7)/(1 - 10*x - 30*x^2 + 300*x^3 + 129*x^4 - 1290*x^5 - 100*x^6 + 1000*x^7)

EXAMPLE

Any square ends with one of 0, 1, 4, 5, 6, 9, so a(1) = 6.

A square may end with 22 different two-digit combinations: 00, 01, 04, 09, 16, 21, 24, 25, 29, 36, 41, 44, 49, 56, 61, 64, 69, 76, 81, 84, 89, 96. E.g. number ending with 14 can not be square etc. See also A075821, A075823.

The finite sequence A122986 has a(3) = 159 terms. [From Reinhard Zumkeller, Mar 21 2010]

MAPLE

-(-6+38*z+241*z^2-594*z^3-1285*z^4+1600*z^5+1500*z^6)/((-1+z)*(5*z-1)*(2*z+1)*(2*z-1)*(5*z+1)*(10*z-1)*(z+1)); #from Bruno Salvy

MATHEMATICA

a[n_] := (83 - 27*(-1)^n + 9*2^(n) - (-1)^n*2^(1 + n) + 9*5^(1 + n) - (-1)^n*5^(1 + n) + 2^(n)*5^(1 + n))/72; Table[ Floor[ a[n]], {n, 0, 20}]

(* Or *) a[0] = 1; a[1] = 6; a[2] = 22; a[3] = 159; a[4] = 1044; a[5] = 9121; a[6] = 78132; a[7] = 748719; a[8] = 7161484; a[n_] := 130 a[n - 2] - 3129 a[n - 4] + 13000 a[n - 6] - 10000 a[n - 8]; Table[ a[n], {n, 0, 20}]

(* Or *) CoefficientList[ Series[(1 - 4*x - 68*x^2 + 59*x^3 + 723*x^4 - 5*x^5 - 1700*x^6 - 500*x^7)/(1 - 10*x - 30*x^2 + 300*x^3 + 129*x^4 - 1290*x^5 - 100*x^6 + 1000*x^7), {x, 0, 20}], x] (* Robert G. Wilson v, Nov 27 2004 *)

PROG

(MAGMA) [1]  cat [(83 + 27*(-1)^n + 9*2^(1 + n) + (-1)^n*2^(2 + n) + 9*5^(2 + n) + (-1)^n*5^(2 + n) + 2^(1 + n)*5^(2 + n))/ 72: n in [0..20]] // Vincenzo Librandi, Mar 29 2012

CROSSREFS

Cf. A036688, A023105, A039300-A039306, A075821, A075823.

Sequence in context: A009361 A193445 A075759 * A028406 A090372 A009366

Adjacent sequences:  A000990 A000991 A000992 * A000994 A000995 A000996

KEYWORD

nonn,easy,nice,base

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 24 06:31 EDT 2014. Contains 248502 sequences.