login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000989 3-adic valuation of binomial(2n ,n): largest k such that 3^k divides binomial(2n ,n). 3
0, 0, 1, 0, 0, 2, 1, 1, 2, 0, 0, 1, 0, 0, 3, 2, 2, 3, 1, 1, 2, 1, 1, 3, 2, 2, 3, 0, 0, 1, 0, 0, 2, 1, 1, 2, 0, 0, 1, 0, 0, 4, 3, 3, 4, 2, 2, 3, 2, 2, 4, 3, 3, 4, 1, 1, 2, 1, 1, 3, 2, 2, 3, 1, 1, 2, 1, 1, 4, 3, 3, 4, 2, 2, 3, 2, 2, 4, 3, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

a(n) = 0 if and only if n is in A005836. - Charles R Greathouse IV, May 19 2013

sign(a(n+1) - a(n)) is repeat [0, 1, -1]. - Filip Zaludek, Oct 29 2016

By Kummer's theorem, number of carries when adding n + n in base 3. - Robert Israel, Oct 30 2016

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..2000

Michael Gilleland, Some Self-Similar Integer Sequences

Wikipedia, Kummer's theorem

FORMULA

a(n) = Sum_{k>=0} floor(2*n/3^k) - 2*Sum_{k>=0} floor(n/3^k). - Benoit Cloitre, Aug 26 2003

a(n) = A007949(A000984(n)). - Reinhard Zumkeller, Nov 19 2015

From Robert Israel, Oct 30 2016: (Start)

If 2*n < 3^k then a(3^k+n) = a(n).

If n < 3^k < 2*n then a(3^k+n) = a(n)+1.

If n < 3^k then a(2*3^k+n) = a(n)+1. (End)

MAPLE

f:= proc(n) option remember; local k, m, d;

   k:= floor(log[3](n));

   d:= floor(n/3^k);

   m:= n-d*3^k;

   if d = 2 or 2*m > 3^k then procname(m)+1

   else procname(m)

   fi

end proc:

f(0):= 0:

map(f, [$0..100]); # Robert Israel, Oct 30 2016

MATHEMATICA

p=3; Array[ If[ Mod[ bi=Binomial[ 2#, # ], p ]==0, Select[ FactorInteger[ bi ], Function[ q, q[ [ 1 ] ]==p ], 1 ][ [ 1, 2 ] ], 0 ]&, 27*3, 0 ]

Table[ IntegerExponent[ Binomial[2 n, n], 3], {n, 0, 100}] (* Jean-Fran├žois Alcover, Feb 15 2016 *)

PROG

(PARI) a(n) = valuation(binomial(2*n, n), 3)

(PARI) a(n)=my(N=2*n, s); while(N\=3, s+=N); while(n\=3, s-=2*n); s \\ Charles R Greathouse IV, May 19 2013

(Haskell)

a000989 = a007949 . a000984  -- Reinhard Zumkeller, Nov 19 2015

CROSSREFS

Cf. A000984, A005836, A007949.

Sequence in context: A062979 A114781 A083890 * A132401 A104273 A051778

Adjacent sequences:  A000986 A000987 A000988 * A000990 A000991 A000992

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, R. K. Guy

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 17:16 EST 2016. Contains 278890 sequences.