login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000913 Number of bond-rooted polyenoids with n edges. 2
0, 1, 2, 12, 38, 143, 490, 1768, 6268, 22610, 81620, 297160, 1086172, 3991995, 14731290, 54587280, 202992808, 757398510, 2834493948, 10637507400, 40023577524, 150946230006, 570534370692, 2160865067312, 8199710635816 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

REFERENCES

S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995) 743-751

LINKS

Table of n, a(n) for n=1..25.

S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995) 743-751. [Annotated scanned copy]

FORMULA

From Emeric Deutsch, Dec 19 2004: (Start)

a(n) = (1/4)c(n+2) - (1/2)c(n+1) - (3/4)c((n+1)/2) + (1/2)c((n-1)/4), where c(n) = binomial(2n, n)/(n+1) are the Catalan numbers for n a nonnegative integer and 0 otherwise.

G.f.: (-4x + 8x^2 - sqrt(1-4x) + 2xsqrt(1-4x) + 3sqrt(1-4x^2) - 2sqrt(1-4x^4))/(8x^3). (End)

MAPLE

c:=proc(n) if floor(n)=n then binomial(2*n, n)/(n+1) else 0 fi end:a:=n->(1/4)*c(n+2)-(1/2)*c(n+1)-(3/4)*c((n+1)/2)+(1/2)*c((n-1)/4):seq(a(n), n=1..27); # Emeric Deutsch, Dec 19 2004

CROSSREFS

Sequence in context: A185788 A305864 A035597 * A026575 A048349 A009632

Adjacent sequences:  A000910 A000911 A000912 * A000914 A000915 A000916

KEYWORD

nonn

AUTHOR

E. K. Lloyd (E.K.Lloyd(AT)soton.ac.uk)

EXTENSIONS

More terms from Emeric Deutsch, Dec 19 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 24 12:14 EDT 2019. Contains 321448 sequences. (Running on oeis4.)