login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000897 a(n) = (4*n)! / ((2*n)!*n!^2). 16
1, 12, 420, 18480, 900900, 46558512, 2498640144, 137680171200, 7735904619300, 441233078286000, 25467973278667920, 1484298740174927040, 87202550985276963600, 5157850293780050462400, 306839461354466267304000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Appears in Ramanujan's theory of elliptic functions of signature 4.

H. A. Verrill proves that a(n) = Sum_{p + q + r = 3n} w^(p-q) * {(3n)!/(p! q! r!)}^2, with p, q, r >= 0 and w = primitive 3rd root of unity.

The family of elliptic curves "x=2*H1=p^2+q^2-(1/4)*q^4, 0<x<1" generates these a_n as the coefficients of the period-energy function "T(x)=2*Pi*2F1(1/4,3/4;1;x)". Applying complex transformation "q->sqrt(-1)*q" to H1 produces "x=2*H2=p^2-q^2-(1/4)*q^4, 0<x<1", with "T(x)=sqrt(2)*Pi*2F1(1/4,3/4;1;1-x)". This explains the appearance of factor sqrt(2)/2 in Ramanujan's nome q_1. - Bradley Klee, Feb 25 2018

Even-order terms in the diagonal of rational function 1/(1 - (x^2 + y^2 + z)). - Gheorghe Coserea, Aug 09 2018

REFERENCES

E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975, p. 96.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

H. J. Brothers, Pascal's Prism: Supplementary Material

B. Klee, Geometric G.F. for Ramanujan Periods, seqfan mailing list, 2017.

S. Ramanujan, Modular Equations and Approximations to Pi, Quarterly Journal of Mathematics, XLV (1914), 350-372.

L. C. Shen, A note on Ramanujan’s identities involving the hypergeometric function 2F1(1/6,5/6;1;z), The Ramanujan Journal, 30.2 (2013), 211-222.

H. A. Verrill, Sums of squares of binomial coefficients, with applications to Picard-Fuchs equations, arXiv:math/0407327v1 [math.CO], 2004.

FORMULA

E.g.f.: Sum_{k>=0} (-1)^k * a(k) * x^(4*k) / (4*k)! = BesselI(0, 2x) * BesselJ(0, 2x).

G.f.: F(1/4, 3/4; 1; 64*x). - Michael Somos, Oct 31 2005

a(n) = A008977(n)/A000984(n) - Zerinvary Lajos, Jun 28 2007

Sum_{k>=0} a(k) * x^(3k)/(3k)!^2 = f(x)*f(x*w)*f(x/w) where f(x) = BesselI(0, 2*sqrt(x)) and w = primitive 3rd root of unity. - Michael Somos, Jul 25 2007

In general, for (BesselI(b, 2x))*(BesselJ(b, 2x))=((x^(2*b))/((GAMMA(b+1))^2)*(1-(x^4)/(Q(0)+(x^4))); Q(k)=(k+1)*(k+b+1)*(2*k+b+1)*(2*k+b+2)-(x^4)+(x^4)*(k+1)*(k+b+1)*(2*k+b+1)*(2*k+b+2)/Q(k+1)) ; (continued fraction). - Sergei N. Gladkovskii, Nov 24 2011

0 = a(n)*4*(4*n + 1)*(4*n + 3) - a(n+1)*(n + 1)^2 for all n in Z. - Michael Somos, Aug 12 2014

0 = a(n)*(-4026531840*a(n+2) +2005401600*a(n+3) -103896576*a(n+4) +1251948*a(n+5)) + a(n+1)*(+41418752*a(n+2) -30435328*a(n+3) +1863228*a(n+4) -24604*a(n+5)) + a(n+2)*(-16896*a(n+2) +75608*a(n+3) -6740*a(n+4) +105*a(n+5)) for all n in Z. - Michael Somos, Aug 12 2014

From Peter Bala, Jul 12 2016: (Start)

a(n) = binomial(3*n,n)*binomial(4*n,n) = A005809(n)*A005810(n) = ( [x^n](1 + x)^(3*n) ) * ( [x^n](1 + x)^(4*n) ) = [x^n](F(x)^(12*n)), where F(x) = 1 + x + 6*x^2 + 105*x^3 + 2448*x^4 + 67043*x^5 + 2028307*x^6 + ... appears to have integer coefficients. Cf. A002894, A002897, A006480, A008977, A186420 and A188662. (End)

a(n) ~ 2^(6*n-1/2)/(Pi*n). - Ilya Gutkovskiy, Jul 12 2016

G.f.: 2*EllipticK(sqrt((sqrt(1-64*x)-1)/(2*sqrt(1-64*x))))/(Pi*(1-64*x)^(1/4)) where EllipticK is the complete elliptic integral of the first kind (in Maple's notation). - Robert Israel, Jul 12 2016

a(n) = Sum_{k = 0..3*n} (-1)^k*C(3*n,k)*C(6*n-k,3*n)*C(2*k,k). - Peter Bala, Feb 10 2018

From Bradley Klee, Feb 27 2018: (Start)

a(n) = A000984(n)*A001448(n).

G.f.: (1/(sqrt(2)*Pi))*Integral_{q=-oo..oo} 1/sqrt(q^2+(1/4)*q^4+(1-64*x)) dq.

G.f.: (1/(2*Pi))*Integral_{phi=0..2*Pi} 1/sqrt(1-64*x*sin^4(phi)) dphi. (End)

EXAMPLE

G.f.: 1 + 12*x + 420*x^2 + 18480*x^3 + 900900*x^4 + 46558512*x^5 + 2498640144*x^6 + ...

MAPLE

seq((4*n)!/(n!)^4/binomial(2*n, n), n=0..14); # Zerinvary Lajos, Jun 28 2007

MATHEMATICA

Table[(4n)!/((2n)! n!^2), {n, 0, 30}] (* Stefan Steinerberger, Apr 14 2006 *)

a[ n_] := Binomial[ 4 n, 2 n] Binomial[ 2 n, n]; (* Michael Somos, Mar 24 2013 *)

a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/4, 3/4, 1, 64 x], {x, 0, n}]; (* Michael Somos, Mar 24 2013 *)

a[ n_] := If[ n < 0, 0, With[{m = 4 n}, (-1)^n m! SeriesCoefficient[ BesselI[ 0, 2 x] BesselJ[ 0, 2 x], {x, 0, m}]]]; (* Michael Somos, Aug 12 2014 *)

a[ n_] := 64^n Pochhammer[1/4, n] Pochhammer[3/4, n] / n!^2; (* Michael Somos, Aug 12 2014 *)

PROG

(PARI) {a(n) = if( n<0, 0, (4*n)! / ((2*n)! * n!^2))}; /* Michael Somos, Oct 31 2005 */

(GAP) a:=n->Sum([0..3*n], k->(-1)^k*Binomial(3*n, k)*Binomial(6*n-k, 3*n)*

Binomial(2*k, k));;

A000897:=List([0..14], n->a(n)); # Muniru A Asiru, Feb 11 2018

CROSSREFS

Cf. A002897, A008977, A186420, A188662.  Elliptic Integrals: A002894, A113424, A006480. Factors: A005809, A005810, A000984, A001448.

Sequence in context: A163971 A249065 A098602 * A036687 A262858 A123778

Adjacent sequences:  A000894 A000895 A000896 * A000898 A000899 A000900

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 20 00:28 EST 2019. Contains 320329 sequences. (Running on oeis4.)