login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000800 Sum of upward diagonals of Eulerian triangle. 6
1, 1, 1, 2, 5, 13, 38, 125, 449, 1742, 7269, 32433, 153850, 772397, 4088773, 22746858, 132601933, 807880821, 5132235182, 33925263901, 232905588441, 1657807491222, 12215424018837, 93042845392105, 731622663432978, 5931915237693517 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

REFERENCES

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.

R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 254.

J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

FORMULA

G.f.: 1/(1-x/(1-x^2/(1-2x/(1-2x^2/(1-3x/(1-3x^2/(1-... (continued fraction). [Paul Barry, Mar 24 2010]

a(n) = Sum_{k} A173018(n-k, k) - Michael Somos, Mar 17 2011

G.f.: 1/Q(0), where Q(k)= 1 - x*(k+1)/(1 - x^2*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 14 2013

G.f.: 1/Q(0), where Q(k)=  1 - x - x*(x+1)*k - x^3*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Apr 14 2013

EXAMPLE

1 = 1, 1 = 1, 1 = 1 + 0, 2 = 1 + 1, 5 = 1 + 4 + 0, etc.

G.f. = 1 + x + x^2 + 2*x^3 + 5*x^4 + 13*x^5 + 38*x^6 + 125*x^7 + 449*x^8 + 1742*x^9 + ...

MATHEMATICA

t[n_ /; n >= 0, 0] = 1; t[n_, k_] /; k < 0 || k > n = 0; t[n_, k_] := t[n, k] = (n-k)*t[n-1, k-1] + (k+1)*t[n-1, k]; a[n_] := Sum[t[n-k, k], {k, 0, n}]; Table[a[n], {n, 0, 25}] (* Jean-Fran├žois Alcover, Dec 14 2011, after Michael Somos *)

Table[Sum[Sum[(-1)^j*(k-j+1)^(n-k)*Binomial[n-k+1, j], {j, 0, k}], {k, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Aug 15 2015 *)

CROSSREFS

Cf. A173018.

Sequence in context: A148303 A148304 A149859 * A149860 A006823 A151446

Adjacent sequences:  A000797 A000798 A000799 * A000801 A000802 A000803

KEYWORD

nonn,easy,nice

AUTHOR

Tony Harkin [ harkin(AT)mit.edu, tharkin(AT)vortex.weather.brockport.edu ]

EXTENSIONS

More terms from David W. Wilson

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 13:38 EST 2016. Contains 279004 sequences.