ON THE NUMBER OF TOPOLOGIES DEFINABLE FOR A FINITE SET

A. SHAFAAT

(Received 6 July 1966)

No general rule for determining the number \(N(n) \) of topologies definable for a finite set of cardinal \(n \) is known. In this note we relate \(N(n) \) to a function \(F_r(v_1, \cdots, v_{r+1}) \) defined below which has a simple combinatorial interpretation. This relationship seems useful for the study of \(N(n) \). In particular this can be used to calculate \(N(n) \) for small values. For \(n = 3, 4, 5, 6 \) we find \(N(3) = 29, N(4) = 355, N(5) = 7,181, N(6) = 145,807 \).

Let \(T \) be a topology on a finite set \(E \). Let \(S_1 \) be the collection of all non-empty sets in \(T \) which do not properly contain any non-empty set in \(T \). It is clear that \(S_1 \) is a collection of disjoint subsets of \(E \). If for any collection \(K \) of sets \(P \cup (K) \) denotes the set of all non-empty unions of sets in \(K \), then \(P \cup (S_1) \subseteq T \). Let \(S_1 \) be the union of all sets in \(S_1 \). Then any non-empty set in \(T \) is of the form \(U \cup V \) where \(V \in P \cup (S_1) \) and \(U \) is a subset of \(E - U \). Let \(T_1 \) be the collection of all the sets \(U \) and the null set. It can be easily proved that \(T_1 \) is a topology on \(E - S_1 \). We shall refer to \(S_1 \) and \(T_1 \) as "nucleus" and "orbital topology" of the topology \(T \), respectively.

By a "reduced base" of a topology on a finite set we shall mean a base such that no base set is a union of other base sets.

Theorem. Let \(B \) be a reduced base for \(T \). Then there is a unique single-valued mapping \(f : B \to P \cup (S_1) \) such that \(B = \{ X_1 \cup X_1/f, X_1 \in B_1 \} \cup S_1 \) is a reduced base for \(T \). Also, \(f \) preserves the inclusion relation \(\subseteq \) for sets. Conversely if \(S_1 \) is a non-empty collection of disjoint non-empty subsets of \(E \), \(T_1 \) is any topology on \(E - S_1 \) and \(f \) is a single-valued mapping from a reduced base \(B \) for \(T_1 \) into \(P \cup (S_1) \) which preserves \(\subseteq \) then \(B = \{ X_1 \cup X_1/f, X_1 \in B_1 \} \cup S_1 \) is a reduced base for a topology \(T \) on \(E \) such that \(S_1, T_1 \) are respectively the nucleus and the orbital topology of \(T \).

Proof. For any \(X_1 \in B_1 \), we define \(X_1/f \) to be a member of \(P \cup (S_1) \) such that \(X_1 \cup X_1/f \in T \) and \(X_1 \cup V \notin T \) if \(X_1/f \not\subseteq V \). \(X_1/f \) exists because \(T_1 \) is the orbital topology of \(T \). If \(V \in P \cup (S_1) \) has the property that \(X_1/f \) then \(V \supseteq X_1/f \) and \(X_1/f \subseteq V \), so that \(X_1/f = V \). Thus \(f \) is a mapping from \(B \) into \(P \cup (S_1) \). We show that \(f \) is the mapping required by the first
part of the theorem. Let \(X_1 \subseteq X_1' \); then
\[
(X_1 \cup X_1f) \cap (X_1' \cup X_1'f) = X_1 \cup (X_1f \cap X_1'f) \in T,
\]
since \(X_1, X_1' \) are disjoint for all \(X_1, X_1' \in B_1 \). We conclude from the definition of \(f \) that \(X_1 \cap X_1' = X_1f \cap X_1'f \) so that \(X_1f \subseteq X_1' \) and hence \(f \) preserves \(\subseteq \). Next let \(Y \in T \) and let \(Y = U \cup V \), where \(U \in T_1, V \in P_\cup (S_1) \). Since \(B_1 \) is a base for \(T_1 \) we can write \(U = U' \cup B_1' \) for some subcollection \(B_1' \) of \(B_1 \). If \(U \) is empty, \(Y \) is trivially a union of sets in
\[
B = \{ X_1 \cup X_1f, X_1 \in B_1 \} \cup S_1.
\]
Hence we can suppose \(B_1' \) non-empty. Then \(X_1' \subseteq V \) for every \(X_1' \in B_1' \); for
\[
X_1' \cup (V \cap X_1f) = (U \cup V) \cap (X_1' \cup X_1'f) \in T
\]
and therefore \(V \cap X_1f = X_1'f \). Hence \(Y = \cup \{ X_1' \cup X_1'f, X_1' \in B_1' \} \cup (\text{union of sets in } S_1) \). This proves that \(B \) is a base for \(T \). That \(B \) is reduced follows directly from the definition of \(f \) and the assumption that \(B_1 \) is reduced. To prove the uniqueness of the mapping \(f \) suppose that \(f^* \) is another mapping satisfying the first part of the theorem. Then, for some \(X_1 \in B_1, X_1f \subseteq X_1'f \). But \(X_1 \cup X_1f \in T \) and therefore is a union of sets in
\[
B^* = \{ Y_1 \cup Y_1f^*, Y_1 \in B_1' \} \cup S_1.
\]
Since \(B_1 \) is reduced is impossible in view of \(X_1f \subseteq X_1'f \).

For the converse, let \(B \) be as defined in the theorem. Then \(E = \cup B = (\cup B_1) \cup (\cup S_1) \). Let \(Y, Y^* \) be any two members of \(B \) and write \(Y = X_1 \cup X_1f, Y^* = X_1^* \cup X_1^*f \). Since \(f \) preserves \(\subseteq \),
\[
Y \cap Y^* = (X_1 \cap X_1^*) \cup (X_1f \cap X_1^*f)
= (X_1 \cap X_1^*) \cup (X_1 \cap X_1^*)f \cup (\text{union of sets in } S_1).
\]
Now \(X_1, X_1^* \in B_1 \) and \(X_1 \cap X_1^* = \emptyset \cup B_1' \), where \(B_1' \) is a subcollection of \(B_1 \). Since \(Z_1f \subseteq (X_1 \cap X_1^*)f \) for every \(Z_1 \in B_1' \), this gives
\[
Y \cap Y^* = \cup \{ Z_1 \cup Z_1f, Z_1 \in B_1' \} \cup (\text{union of members of } S_1);
\]
so that \(Y \cap Y^* \) is a union of members of \(B \). In case one or both of \(Y, Y^* \) are members of \(S_1 \) and therefore not expressible in the form \(X \cup Xf \), \(Y \cap Y^* \) is trivially a union of sets in \(B \). Hence the intersection of any two members of \(B \) is a union of members of \(B \) and therefore \(B \) is a base for a topology \(T \) on \(E \). The rest of the theorem now follows directly.

For any topology \(T \) on a finite set \(E \) we can form the sequence \(T_0 = T, (S_1, T_1), (S_2, T_2), \ldots, (S_t, T_t), \ldots, (S_{t+1}, T_{t+1}) \), where \(S_z, T_z \) are respectively the nucleus and the orbital topology of \(T_{k-1} \) for \(t \geq k \geq 1 \) and \(S_{t+1} \) is a reduced base as well as the nucleus of \(T_t \), so that \(T_t = P_\cup (S_{t+1}) \). By the above theorem there is a unique sequence of mappings \(f_1, \ldots, f_t \) such that for
1 \leq i \leq t, f_i maps B_i into \bigcup_i S_i, where B_i is a reduced base for T_i and is defined by

\[B_i = S_{t+1} \cup B_i = \{X_{t+1} \cup X_{i+1} f_{i+1}, X_{i+1} \in B_{i+1}\} \cup S_{t+1}, \]

for \(0 \leq i \leq t \).

By our theorem, every topology on E can be obtained as follows:

- Partition \(E \) into any number, say \(r \), of disjoint and collectively exhaustive classes \(E_1, \ldots, E_r \) and then partition, in an arbitrary way, the set \(\{E_1, \ldots, E_r\} \) into disjoint and collectively exhaustive classes, say, \(S_1, \ldots, S_t \).
- Let \(f_1, \ldots, f_t \) be any mappings such that
 1. \(f_1 \) maps \(B_1 = S_{t+1} \) into \(\bigcup_i S_i \).
 2. \(f_{i-1} \) maps \(B_{i-1} \) into \(\bigcup_i S_{i-1} \) where
 \[B_{i-1} = \{X \cup X f_{i-1}, X \in B_{i-1}\} \cup S_{i-1}. \]
 3. Each of the mappings \(f_1, \ldots, f_t \) preserves the inclusion relation \(\subseteq \) for sets.

Then \(B = B_0 = \{X_1 \cup X_1 f_1, X_1 \in B_1\} \cup S_1 \) is a base for a topology on \(E \) and every topology on \(E \) is obtained in this way.

In view of this we can express the number \(N(n) \) of topologies definable for a finite set of cardinality \(n \) as follows:

\[(1) \quad N(n) = \sum_{r=1}^{n} \left[M_{n,r} r! \sum_{r_1+\cdots+r_t=r} \left(\frac{|F_t(r_1, \ldots, r_t)|}{r_1! \cdots r_t!} \right) \right] \]

where \(M_{n,r} \) is the number of ways a set of order \(n \) can be partitioned into \(r \) unordered classes and \(F_t(r_1, \ldots, r_t) \) is the number of sequences of mappings \(f_1, \ldots, f_t \) described above when \(S_1, \ldots, S_t \) have \(r_1, \ldots, r_t \) members respectively. The summation in curly brackets extends over all finite sequences \(r_1, \ldots, r_t \) of positive integers satisfying \(r_1 + \cdots + r_t = r \).

The following recurrence relation holds for \(M_{n,r} \):

\[M_{n+1,r} = rM_{n,r} + M_{n,r-1}. \]

The function \(F_t(r_1, \ldots, r_t) \) has a simple combinatorial interpretation which we explain by taking \(t = 3 \) and by referring to the figure below.

\(x(1,1) \)	\(x(1,1) \)
\(x(2,1) \)	\(x(2,1) \)
\(x(3,1) \)	\(x(3,1) \)
\(x(4,1) \)	\(x(4,1) \)

Figure 1

[1] Strictly speaking, these formulae are represented by the following conclusions about \(t \):

\[(3) \quad F_t(r_1, \ldots, r_t) = \frac{M_{n,r} r! \sum_{r_1+\cdots+r_t=r} \left(\frac{|F_t(r_1, \ldots, r_t)|}{r_1! \cdots r_t!} \right)}{n!} \]

\[(4) \quad F_1(r_1, r_2) = \frac{M_{n,r} r! \sum_{r_1+\cdots+r_t=r} \left(\frac{|F_t(r_1, \ldots, r_t)|}{r_1! \cdots r_t!} \right)}{n!} \]

\[(5) \quad F_2(r_1, 1, k) = \frac{M_{n,r} r! \sum_{r_1+\cdots+r_t=r} \left(\frac{|F_t(r_1, \ldots, r_t)|}{r_1! \cdots r_t!} \right)}{n!} \]

\[(6) \quad F_3(1, 1, \ldots, 1) = \frac{M_{n,r} r! \sum_{r_1+\cdots+r_t=r} \left(\frac{|F_t(r_1, \ldots, r_t)|}{r_1! \cdots r_t!} \right)}{n!} \]

\[(7) \quad F_4(1, 1, \ldots, 1) = \frac{M_{n,r} r! \sum_{r_1+\cdots+r_t=r} \left(\frac{|F_t(r_1, \ldots, r_t)|}{r_1! \cdots r_t!} \right)}{n!} \]
In this figure we have taken $e_1 = r_4$, $e_2 = r_3 + r_4$, $e_3 = r_2 + r_3 + r_4$, $e_4 = r_1 + r_2 + r_3 + r_4$. Every one of the r_4 squares in the first row is given to be occupied with just one of the symbols $x(1, 1), \ldots, x(1, e_1)$ that are labels for sets in S_4. In the second row only the last r_2 squares on the right are given to be initially occupied, each by just one of the r_2 symbols $x(2, e_1 + 1), \ldots, x(2, e_4)$ that similarly stand for sets in S_2; and so on. Let us refer to the jth square from the left in the ith row from the top as $a(i, j)$. In what follows we shall not explicitly mention the restrictions on the ranges of the variables i, j, k, \ldots. Write $\Sigma(i, j) = \{x(i, j)\}$ if $a(i, j)$ is not initially empty. The combinatorial problem now is to place in every empty square $a(i, j)$ a non-empty set $\Sigma(i, j)$ of symbols such that

(iv) $\Sigma(i, j) \subseteq \{x(i, e_{i-1} + 1), \ldots, x(i, e_i)\}$,

(v) $x(i, k) \in \Sigma(i, j)$ implies $\Sigma(i + 1, k) \subseteq \Sigma(i + 1, j)$.

Thus, for example, the conditions (iv), (v) compel us to place in the empty squares of the third row in Fig. 1 symbols chosen from $x(3, e_2 + 1), \ldots, x(3, e_3)$, and if $x(3, e_2)$ has been placed in $a(3, e_2)$ (the square immediately below the one containing $x(2, e_2)$) then $x(3, e_3)$ will have to occur in any set of symbols to be placed in a square of the third row which comes directly under a square containing $x(2, e_2)$. Let $Y(i, k) = \bigcup_{l=1}^{k} \Sigma(l, k)$. Then it is easily seen that if we let B_{4-i} be the set of all $Y(i, k)$ for fixed i and write $Y(i, k)/a_{4-i} = \Sigma(i + 1, k)$ then B_{4-i}, I_{4-i} satisfy (i), (ii), (iii) for $t = 3$. It follows that $F_4(r_1, r_2, r_3, r_4)$ is the number of ways of placing the symbols $x(i, j)$ in the empty squares of Fig. 1 such that (iv) and (v) are satisfied.

We can use this interpretation of $F_4(r_1, \ldots, r_{t+1})$ to prove the following formulae.

(3) $F(r_1) = 1$,

(4) $F_1(r_1, r_2) = (2^{r_1} - 1)^{r_2}$,

(5) $F_2(r_1, 1, r_3) = \sum_{l=1}^{r_1} \binom{r_1}{l} 2^{(r_2-1) r_3}$,

(6) $F_2(1, r_1, r_2) = \sum_{l=1}^{r_1} \sum_{m=0}^{r_2} 2^{r_3-m} \binom{r_1}{l} \binom{r_2}{m} (2^{r_2-1} r_1-1)^{(2^m - 1) - m(2^m - 1)}$,

(7) $F_4(1, 1, \ldots, 1, r_{i+1}) = \sum_{j_1 > 0, j_2 > 0, \ldots, j_i > 0} \binom{r_{i+1}}{j_1} \binom{r_{i+1}-1}{j_2} \ldots \binom{r_{i+1} - (j_1 + \cdots + j_{i-1})}{j_i}$.

1 Strictly speaking, members of B_{4-i} must be taken as the unions $\bigcup Y(i, k)$ of all sets represented by the x's in $Y(i, k)$, but since x's represent disjoint sets this will not affect our conclusion about $F_4(r_1, \ldots, r_4)$.

\section*{Topologies definable for a finite set}

197
As an illustration we prove (5). We have to consider the number of ways some of the \(x(i,j)\) can be placed in the empty squares in fig. 2 below such that (iv), (v) are satisfied.

![Figure 2]

In every empty square of the second row of this figure we must put just \(x(2, e_3+1)\). In the square \(\sigma(3, e_3+1)\) under \(x(2, e_3+1)\) we can place any subset \(\Sigma(3, e_3+1)\) of \(\{x(3, e_3+1), \ldots, x(3, e_4)\}\). In the remaining empty squares of the third row we must put every symbol in \(\Sigma(3, e_3+1)\) in addition to some other symbols arbitrarily selected from \(\{x(3, e_3+1), \ldots, (3, e_3)\} - \Sigma(3, e_3+1)\).

The formula (5) is now obvious.

We have employed formulae (1) – (7) in calculating \(N(n)\) for \(n = 3, 4, 5, 6\).

In the end I would like to thank Professor Hanna Neumann for her useful suggestions for the improvement in the presentation of the material of this paper. My thanks are also due to the referee for his very valuable criticism.

Institute of Advanced Studies
The Australian National University
Canberra, A.C.T.

and

Panjab University
Lahore, Pakistan