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§0, Preliminaries

Let R be a relation in a set X. xRy means (x,y)€R.
If A,BcX write ARB if xRy for all x€A, y€B. A chain of
length n20 is a sequence (xo,...,xn) e x®1 guch that
vax

v +1? V < n; write xoR...Rxn. If n = 0 the chain

reduces to an element of X; if n = 1 the chain is an element

of R, Say R is strongly irreflexive if J:QR...I?.xn = X,
implies n = 0, i.e., there are no "loops". For a strongly
irreflexive relation R there is a depth function dR:I —_—ew U {"0}

defined by
dR(x) = sup{a\_:_-} xoR...Rxa = x}

and dR(x) = oo 1if there are chains of arbitrary length
terminating at x, Let L, = I'a(R) denote the a’l level, the
set of elements of depth a; let £ 8 denote the cardinality
of I'a’ and let @ be the largest integer such that La £ 48,
setting d = a0 if there is an element at every level, The |
following facts are easy to verify.

(0.0) if x R...Rx, = x then d"(x) = a iff d\(x, ) =¥ , V< e;

(0.1) card X <90 =>q <cO;

(0.2) a aél b =L NI = #;

(0.3) card X =n<eo =p»n = {3 <, 3 |

(0.4) if xeLa there is a chain‘xoR...Rxa = x such that
x,€ Lys Yo

R
(0.5) dR(X)<oo ’ ny=>dR(x)<d (¥) .

A partially ordered set, or poset, is a pair P = (x, <
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with X a set and £ a relfexive, transitive and anti-

symmetric relation in X, i.e,, for all x,y,z€X

X<Xx

Xey<£2Z =>X<2

X<ysxX=>X=Y .
P is finite if its underlying set X of nodes is finite;
card X = n<eo is the order of P, A strongly refiexive
relation C in X is defined by xCy if and only if

x<y and (x<usy=>x=uoru=y).

C is the co-cover relation of P; the elements of C are

cOo=Ccovers,

Lemma (0,6) Let P be a poset with co-cover relation C.

The following hold.

(1) xoC...er, r>1 and x Cx, imply r =1 ;

(ii) if P is of finite order and x <y then there is a
chain x = xOC...er =y, r21. #

If P* = (X',<’) is also a poset a morphism from P
to P' is a function £:X —>X' such thet x <y =>f(x) <£(y).
f is an isomorphism if there is a morphism g from P' to P
such that gf = ].x and fg = 1X' « Two posets are isomorphic
if there is an isomorphism between them. The relation of

isomorphism is an equivalence relation.

§1. Po-diagrams

A po-diagram H = (X c) consists of a set X and a

strongly irreflexive relation C in X such that
- 2— :



xoc...er, rzl and xOer imply r =1 .

An isomorphism of H with a po-diagram H' = (X',C') is

given by a bijection h:X =® X' such that
xCy<>h(x)C'hly) o

Construction (1.0) Let P = {X, £) be a poset with co-

cover relation C.Then H(P) = (X,C) is a po-diagram.
Lemma (1.2) Suppose f:P = P!, Then f:H(P) = H(P'). "

Construction (1.3) Let H = (X,C) be a po-diagram. Define

a relation € in X by x<y if and only if
there is a chain x = xoc,..er =y, r=0,

It is easy to prove that P(H) = (X, €) is a poset.

Lemma (1.4) Suppose h:H = H', Then h:P(H) £ P(H'), #

Theorem (1.5) H(P(E)) = H and P(H(P)) = P. #

§2. Po-strings

A concatenation s s;...s _, of symbols is a list

of length n >0 with i¥

h entry Sy i<n., If n =0 there

are no entries and the list is empty. If the entries are

themselves lists, empty or not, then they shall be en-

closed in parentheses to mark their beginnings and endings.
i

A string of order n>O0 is a list whose entry

is either the empty iist or a list of finite ordinals Qf_

the form



@ = €4qyceeCyp 0 x;i>,l, 1<A°11<“‘<°in <n o,

1 1

Note that e -1 must be ‘empty. Any string may be obtained
from the string

(124..0-1)(23.0.0-1) ... (n=2 n-1)(n-1)( )

by deleting entries, In particular, the empty string

() Deso( YO )( ) is obtained by deleting all entries,
Let e be a string. A strongly irreflexive rela’tion
C, is defined in n = {0,1,.0.,n-1% by iCk if and only if

there is j, lfjsni such that ei;] =k .

Write d® for the depth function of C,e Thus a®(1) =0
means i1 occurs in none'of the lists of e, A po-string is
a string e with the properties

(PS1) a%(1)<a®(j) =>1<j

(Ps2) ioce“'ceir’ r>1l and ioceir imply r =1 .

Bxamples (2.0) (13)(2)( )( ) is a string of order 4 that

fails to satisfy (PS1), and (1)(24)(3)(4)( ) is a string
of order 5 which satisfies (PS1) but fails to satisfy (PS2),
Construction (2.1) Let e be a po-string.

~ Then H{e) ='(n,ce) is a finite po-
diagram, | |
Example (2.2) From (23)(23)(4)(4)( ) (2.1) gives




>
2

Construction (2.3) Manufacture of a string from a po-

diagram H = (X,C) of finite order n involves choice, It
is necessary to "label" the nodes of H in the following
sense, A labelling for H is an order-preserving bijection
A:Xacn, i.e., xCy = A(x) < A(y). Hence A 1s an ordinal

sum of bljections Q\a:La I~ .,Za, a €d such that for xeLa

}\a(x) ifa=0
Xx) =

£°+...+fa_l + )a(x) if a>0 .,

Call )(x) the label of x by A . The finite po-diagram H
together with a choice of labelling A is a labelled po-

- diagram, denoted by H?\ o Every finite po-diagfam has a

labelling, indeed, H has exactly ,Zo! ,61!... ﬁd! distinct
labellings.

Construct a list e = e(H)‘ )} of lists by taking for
ey the arrangement in ascending order from left to right
of all the labels of nodes y such that ;\'l(i)Cy. Let

2';1(1) =x€l,, y‘éLb. Then a <b and so

(x) = Z°+...+ 'é-l + A, (%)
< Zo+...+ [a-l + /4,
< 'eo'['”’*[b-l |
& Ateeitlyq + Ap)
= A(y) .
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Therefore i < A(y). This proves e is a string. Replacing
the nodes x,, in a chaih x,Ce.sCX, by their labels A(x., )
yields a chain A(xo)Ce...Ce }\(xr) + Therefore &C(x) <
d®(A(x)). The inverse replacement similarly yields dc(x)>,
a®() (x)), thus equality holds and it follows that e(H 2)
is a po-string,.

Remark (2.4) If e is a po-string then L:< coe <L; » Where
th

L; stands for the a” level of Ce. Therefore the definition

of bijections Ag:Lz :&;,ég , a<d by the formula

1 ifa=20
Ac(i) =
i -ﬂa-l-....’[,o if a>0

makes sense, We conclude that H(e) comes naturally equipped
with the labelling A° = identity function of n.

Lemma (2.5) For any po-string e and labelled po-diagram

H. .the following are true, (i) e(H(e)) = e, (ii) H(e(HA))

1‘_!}1.#

Corollary (2.6) For every finite po-diagram H there is

a po-string e such that H = H(e), #

Using (1.4), (1.5) and (2.,6) we have
Theorem (2,7) For every finite poset P there’' is a po-string
e such that P ¥ P(H(e)). 2

§3. Representation SEfintte—posetd
Construction (3.0) Consider a po-string e of order n and |

a permutation 7 of n = io,l,...,n—l'g » Suppose 7T has the
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property

(P) a®(rt (1)) = a%(1), 1<n .
Then
16k =>a°(1) < a°(k) by (0.5)
=4%(c (1)) <4a%(7r(k)) by (P)
=T(1) <T1t(k) by (PS1) .

Thus a new string et may be constructed, whose jth

1list for T(i) = j is the arrangement in ascending order
from left to right of those values 7 (k) such that 1C k.
Another way to put this is that the co-cover relation in
eTc is given by’

TC(1)C r T(k)<E>1C .k .

Therefore e is a po-string, We say that 7T is applicable

to e if (P) holds, and that e'* is the permute of e by TC »
The set S e of permatations which are applicable to

e is a subgroup of the symmetric group Sn' If e'~ e is

written when e' is a permute of e,. then .~ is an equivé,lence

relation in the set of all po-strings of o-rder n. The

equivalence class of a po-string is called its permute class,

It is not hard to prove that S o is isomorphic to the direct
product of symmetric groups S,Z Xeoso X'ij . '

L, A
Lemmo (3.1) Let e!, e be po-strings of order n. Then H(e) =
H(e') if and only if e'~e . .
Combining (1.2), (1.5), (2.7) and (3.1) gives us

-1-



Theorem (3.2) For every finite poset P‘there is a unique-

up-to-permutes po-string e such that P = P(H(e)). 2

Lemma (3,3) There is a canonical choice of representative

in the permute class of a po-string,.

It will be shown below that the permﬁte class of a po-string
is totally ordered by a lexicographical ordering of the

set of all strings of order n.

Theorem (3,4) For every finite poset P there is a unique

po-string e such that e ié first in its permute class an d
P = P(H(e)). #

Remark (3,5) It can be shown that a“theorem*analbgdusutbo

(3.4) holds in the more general context.:f pre-ordered sets,
n .

X4
which are known to be the same as) » topological spaces,

§4. Generation of finite posets of order n

The first step in generating a list of representative
po-strings of order n, exactly one from each permute class,
is to prepare a list of all the permutations ﬂb-°°'“h-1
of n = {O,l,...,n—lf} e« This may be done recursively,
starting with the empty list for n = O, and obtaining the
list for n from the list for n-1 by inserting the figure
n-1 in each of n positions of each entry in the list for n-1.

' The second step is to prepare a list of all the strings
of order n, arranged in their natural lexicographical order,
described as follows., A string is a list (eo)...(en_l) of
lists e; = eil”‘eini such that i<eil< cee <€y <n.,

i
Thus the possibilities for ey correspond to the sub-lists



of the list i+l i+2 ... n=-2 n-1 , These sub-lists, in

turn, are in 1-1 correspondence with the binary numbers

n-i=1

from O up to 2 =] o Therefore the possibilities for

ey are totally ordered in terms of numerical magnitude
éi of corresponding binary numbers, The lexicographical
ordering on the set of all strings of order n is the

& < * U
ordering < given by (eo)...(en_l)..(eo)...(en_l) if and

only if at the least index i such that e, # ey we have

ey ‘313.{ .
Example (4.0) The list of all strings of order 3 in lexico-

graphical order,

()
( )(@)(
(2)( )(
(2)(2)(
(1) )(
(1)(2)(
(12)C )()

(12)(2)C ) «

[P L s . Y I

The third step is to delete from the list of all
strings of order n those which are not po-étrings.-?here
are two ways a string e may fail to be a po-string,
corresponding to the conditions (PS1)-(PS2). It may be
that for some i and j we have da°(i)<a®(j) but'i'a;j, and
it may be that for some r >1 we have not only ioce“°ceit
but also ioceir .



Algorithm (4,1) To compute 3%, Let » be a string of order

Ny ¥ =(5<7<py By» and 1eti’k=e y 1<k<r be all

i
the entries of e, so 1k_< fk«; n=-1 fléikléks,r. For example,
the 2+0+1+1+0 = 4 entries of (13)( )(3)(4)( ) are 1,3,3,4.
Construct a matrix with n columns and r+l rows as follows.
Row O consists of zeroes, Row k+l, O£ k< r corresponds to
the entry fk+l and has, in colump fk+l’ 1 plus the entry
in row k at column ik+1’ and in all other columns is the
same as row k, By this construction column O consists of
zeroes., It is easy to see that d°(i) is the largest of
the entries in column i, 0<i<n, The string e fails to
satisfy (PS1) if and only if the sequence (d%(0),...,3%(n-1))

is not increasing (repetition allowed).

Example (4.2) Let n =5 and e = {13)(" )(3)(4)( ). Then

r = 4 and the matrix is

o o o o o
T
©o o o o o
H M H O O
N O O © ©

so e fails to satisfy (PS1), This is obviocus to the

human being from the labelled po-diagram of e,

o) 2
O
ro-

Algorithm (4,2) To verify (BS2). Let e and £19e0ert, 88
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in (4.1). Construct a sequence of n matrices M, such
that,Mk has n columns and 1 + k;;;}:nni rows as follows.
M, is constructed exactly as in (4.1), except that all
the éolumns from O up to and inéluding column fk are
filled with zeroes, and the calculation can continue
only until row 1 +vk§?;2-néi . Thus (4.1) gives M.

It is almost easy to see that e fails to satisfy (FS2)
if and only if there exists a column in one of the
matrices which has both an entry 1 and an entry 4> 1.
The largest of the entries in column i:>fk of Mk is
the depth of node i below node fk’

Example (4.3) Let n =6 and e = (2)(2)(35)(4)(5)( ).

Then r = 1+14+2+1+41+0 = 6, and the matrices are as follows,

M, 000000
© 01000
001000
001200
0012 0 2
0012 3 2
0012 3 4

M, 0 00000
001000
001200
00120 2
001 2 3 2
0 012 3 4

!
S~
—

1



M, 0 00 0 0O
000100
0 001 021
0 00 1 21
o 001 2 3
M, 0 0 00 0O

Mg 0 00 0 O0O0 ,°

Since column 5 of M, has entries 1 and 3, e fails to

satisfy (PS2). The human being sees this immediately

labelled
from the ,\po-diagram of e,

o
&
& / . .
Thus the construction of a sequence of matrices
suffices to detgrmine whether a string is a po-string,

and those strings which are not po-strings are now
ring

deleted from the master\list,ctuii—eirings, b&:\e\cltwa,

The fourth and last step is to construct the out-

the 'mas-\'ev po-s\'v'\walif

put list of'ropresentative po-strings. Put the empty
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string ( )...f.) at the top of the list. Proceed down
the mastcriiis?? accepting or rejecting po-strings
according to the following rule, Let e be the po-string
in question, and let TCO...Ttn_l be a permutation of
n={0,1,...,0-1} . Then TU is applicable to e if and
only if a°(yry) = d°(1), 0<¢i<n. Proceed down the list
of permutations prepared in the first step, computing

en:, when TC is applicabde to e, according to (3.0).

Stop this calculation of permutes en

of e as soon as
eﬂ:< e in the lexicographical order, and reject e, If
no permute of e is earlier than e in the lexicographical
order, then e must be first in its permute class, and
accept e, The list of accepted po-strings is the outpﬁt
list, and ié essentially a list of . finite posets of
order n, one in_each isomorphism class of finite posets

of order n,
Remark (4.4) This listing places all finite posets of

order n later than all finite posets of order n-l, there-
fore the set of isomorphism classes of finite posets is
totally ordered. |
Computation (4.5) In less than 20 minutes a 360 PL/1

program gave all representatives of posets with 6 nodes,
yielding 1, 2, 5, 16, 63, and 318.for 1, 2, 3, 4, 5, and

6 nodes, respectively.
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