%I M5006 N2155 #27 Feb 01 2022 01:12:03
%S 1,-16,104,-320,260,1248,-3712,1664,6890,-7280,-5568,-4160,33176,4640,
%T -74240,29824,14035,54288,27040,-142720,1508,-110240,289536,222720,
%U -380770,-83200,-123904,142912,7640,408000,386048
%N Expansion of Product_{k>=1} (1 - x^k)^16.
%D Morris Newman, A table of the coefficients of the powers of eta(tau), Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Seiichi Manyama, <a href="/A000739/b000739.txt">Table of n, a(n) for n = 0..10000</a>
%H M. Boylan, <a href="http://dx.doi.org/10.1016/S0022-314X(02)00037-9">Exceptional congruences for the coefficients of certain eta-product newforms</a>, J. Number Theory 98 (2003), no. 2, 377-389.
%H <a href="/index/Pro#1mxtok">Index entries for expansions of Product_{k >= 1} (1-x^k)^m</a>
%F a(0) = 1, a(n) = -(16/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Mar 27 2017
%F G.f.: exp(-16*Sum_{k>=1} x^k/(k*(1 - x^k))). - _Ilya Gutkovskiy_, Feb 05 2018
%K sign,easy
%O 0,2
%A _N. J. A. Sloane_