login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000715 Number of partitions of n, with three kinds of 1,2 and 3 and two kinds of 4,5,6,....
(Formerly M2786 N1121)
2
1, 3, 9, 22, 50, 104, 208, 394, 724, 1286, 2229, 3769, 6253, 10176, 16303, 25723, 40055, 61588, 93647, 140875, 209889, 309846, 453565, 658627, 949310, 1358589, 1931464, 2728547, 3831654, 5350119, 7430158, 10265669, 14113795, 19313168, 26309405, 35685523 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Convolution of A000712 and A001399. - Vaclav Kotesovec, Aug 18 2015

REFERENCES

H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 122.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..10000

N. J. A. Sloane, Transforms

FORMULA

EULER transform of 3, 3, 3, 2, 2, 2, 2, 2, ...

G.f.: 1/((1-x)*(1-x^2)*(1-x^3)*Product_{k>=1}(1-x^k)^2). - Emeric Deutsch, Apr 17 2006

a(n) ~ exp(2*Pi*sqrt(n/3)) * n^(1/4) / (8 * 3^(1/4) * Pi^3). - Vaclav Kotesovec, Aug 18 2015

EXAMPLE

a(2)=9 because we have 2, 2', 2", 1+1, 1'+1', 1"+1", 1+1', 1+1", 1'+1".

MAPLE

g:=1/((1-x)*(1-x^2)*(1-x^3)*product((1-x^k)^2, k=1..40)): gser:=series(g, x=0, 40): seq(coeff(gser, x, n), n=0..31); # Emeric Deutsch, Apr 17 2006

# second Maple program

a:= proc(n) a(n):= `if`(n=0, 1, add(add(d*`if`(d<4, 3, 2), d=numtheory [divisors](j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..50); # Alois P. Heinz, Sep 25 2012

MATHEMATICA

nn=25; p=Product[1/(1- x^i)^2, {i, 1, nn}]; CoefficientList[Series[p /(1-x)/(1-x^2)/(1-x^3), {x, 0, nn}], x] (* Geoffrey Critzer, Sep 25 2012 *)

CROSSREFS

Sequence in context: A001937 A086817 A247188 * A260545 A034505 A143099

Adjacent sequences:  A000712 A000713 A000714 * A000716 A000717 A000718

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

Extended with formula from Christian G. Bower, Apr 15 1998

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 14 14:20 EDT 2019. Contains 328017 sequences. (Running on oeis4.)