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Eju@ A THEOREM IN PARTITIONS

Richard K. Guy

The following theorem is due to Glaisher [l,2], but it does not
seem to be as widely known as it deserves to be. Four proofs are

given, two combinatory and two algebraic, spme of which may be new.

SToewe

Let pe(n) be the number of partitions of a non-negative integer
n into an even number of parts, or the number of partifidnslof n of |
which the largest part is even, and let po(n) be the numberhofv |
partitions of n into an odd number of parte, or the numbexr of par-

titions of n of which the largest part is odd. Then
n
p,(m) - p (n) = (-)'p, (),

where p, (n) is the mumber of 'self-conjugate' partitione of n, or the

number of partitions of n into odd, unequal parts. (Define

pe(O) = pw(O) =1, p (0) =0.)
 The first proof is similar to Franklin's [3,4,5,6] of Euler's

analogous theorem [7,8] concerning partitions into unequal parts.

The Ferrers dtagrams [9,10] of all the partitions of n are considered h

and a l1-1 correspondence established between those with an even ﬁuﬁber
of parts and those with an odd number of parts, except for an excess
of one kind or the other, which correspond to the self—cénjugate
partitions, whose Ferrers diagrams are symmetrical abouf their ieading
diagonals.

Define the face, f, of a partition of n as the number of pérts ‘
equal in size to the largest part, and the bagse, b, as the size bf 1
the smallest part, I.e., b and f are posifiye integers.

If b # f, then one of them (considered as the last row or colump)
may be transferred to the other, but not vice versa; e.g. in‘thg first

diagram below, the base, b = 2, may be transferred to the face. This



establishes a correspondence between two partitions, one with an even
number of parts, the other with an odd number. Assume for the present

that, after transfer, the new base 1s not equal to the new face.
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It b = f (before or after éraﬁsfer).define’the1hé;5, h, as the
amount by which the largest parts (f of them) exceed the next largest
part;.the Zeg,.Z, aé the number of pafts equal in size (b = f)5fo the
smallest part; and the extremity, 8, as h + L. Then continued transfers
produce s + 1 partitions (wifth heads 0,1,2, ..., 8 and legs 8,8-1, ..., 1,0
regpectively). If s is odd, these may be put into corresponding-pairs.
Note that the ﬁreceding paragraph, in which b # f, may be.included here
as the case s = 1. | |

If b = f and s is even, say ¢ = 2k, then éither k is even or odd.
if k is even, the correspondences (h,l) = (0,2k) with (1,'2k—1);'(2, 2k=2)
with (3, 2k-3), ..., (k-2, k+2) with (k-1, k+1), (k+l, k-1) with
(k+2, k-2), ..., (2k-1, 1) with (2k, 0), can be set up, leaving the
partition with (h,7) = (k,k), i.e. with symmetfical extremity, unpaired.

If ¥ is odd, the partitions éan be pairea as before, except that
the middle three, with (k,1) = (k-1, k+1), (k,k) and (k+l, k-1) now
rémain. There is an excess of one partition, with numbers of parts

k £ 1 in head and leg.
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If the extremity is removed, leaving a body, the parity of the
number of nodes, n, is not changed, since an even number, 2kb, is
removed. Moreover the extra, unpaired partition has the same parity
of number of parts as the body, since k parts are removed when X is
even, and kK * | when k is odd. |

Now treat the body in the same way as the original partition,
defining a new base, b,, and a new face, f53. Either this leads to a
complete pairing, or there is an excess of omne, with symmetrical
extremities, of the same parity of number of parts as the next body.
This process is carried out 7 times (¢ 2 1) until the final base
and face intersect. If these are still equal, bi = fi = d, say, the
residue is the Durfee square [11,12] of the original partition, Z.e.
the largest square, d?, of nodes occurring in the (top léft of the)
Ferrers diagram. T1f b, # f,, then e; = lbi.; fil transfers are
possible, resulting in e; + 1 possible shapes for the final body, .
which may be paired, or almost paired, as before.

>Conversely, any self-conjugate partition corresponds to an excess
of one over this method of pairing. The éxcess will always have the
same parity as the number of nodes in the Durfee square, and so the
same parity as n itself. Hence the result.

A second combinatorial proof 1s suggested on noting that a parti-
tion of »n into odd, unequal parts must have an ‘odd number of parts if
#n is odd and an even number if » is even. A 1-1 cofrespondence between
partitions of » with oda and even numbers of parts; except for such
partitions, may be set up as follows. |

In any partition, look for the largest even part, say r, and for

the two largest equal parts, say g, g- It may happen that ¥ = g;
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this does not affect the argument.

If 2g > r (including the case » = 0,

where there is no even part) combine the two equal parts to produce a

partition with a larger even part, and one less part. If r 2 2q

(including the case g = 0, where the parts are all unequal) split the

largest even part into two equal parts, producing a partition with

at least as large equal parts and one more part. The only partitiomns

to which the process does not apply are those with » = g =0, Z.e. with

no even or equal parts. It can be seen

(a) that the process 1s unique,

(b) that it produces a partition with a number of parts of

opposite parity from the original, and

(c) that when it is applied to the resulting partitiom, it

restores the original one.

The required correspondence is established.

The two proofs are illustrated by the correspondences for n = 9,

p(9) = 30, pw(9) = 2, so there are
The self-conjugate partitions of 9

paired in the first proof:

9 712 415 217 72 5212 321"
81 613 316 19 621 4213 221°

In the second proof the partitions

and the pairings in this case are

81 72 63 621 613 54 5212
421 712 33 3221 3213 522 51

%(30 - 2) = 14 pairs in each case.

are'3?-and 51%, so these are not

63 4312 522 32212
531 3213 4221 2333

into odd unequal parts

432 4312 4221 4213
323 32212 41 2313

54 432 323
421 3221 2“1

are 9 and 531

415 321% 217
2215 316 1° .
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An immediate corollary is that p(n) is of the same parity as pw(n),
but this is obvious by pairing partitions with their conjugates. This
does not, of course, give a pairing between partitions with odd and
even numbers of parts.

Some algebraic identities are also implied. By removing the

Durfee square, the generating function for pw(n) may be seen [13] to be

x xt x°

1+ + + +
Loz? (1 -ad)(l-2z% Q-2 -29H0-25

2 pw(n)xn
n=0

© 2 n _
+ .= ] b (1 - xzm) 1, so that
n=0 m=1

T n no_ x x*

L (=) pw(n)x =1 = > + — -
n=0 1 -z (1 - x2)(1 - x™)

9 ‘ ® 2 n _ »
- x e = T @ET T a2 W
(1 - 22)(1 = x*) (1 - «®) n=0 m=1

or, since pw(n) is also the number of partitions into unequal odd parts,

I p,ma = L+ G+ 21 4% .= 1 (1 +a”", so that

n=0 m=1

< : ® om-1

2 (—)”pwm)x” =1 - -2HA-2% ...= 01 (1-2 . (B)
n=0 m=1

If we mﬁltiply and divide this last expression by
1 +x)(1 +22)0 +zHA +28 ...

and also by the same infinite product with x replaced in turn by

x3, x5, x7, x9, ..., we may also write it in the form
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)"p ()" !
0o (1 +x)(1 +22)(1 +23)1 +z*)...

It e~-18

mo(L+ a2l (C)
m=1 ’
Now the number of partitions of »n into exactly m parts is equal -
to the number of partitions of n-m into at most m parts, and so is

e n=m ., .
the coefficient of x in the expansion of

N N =N Ee EE e B
n

i
1 -2)1 =21 -2% . (1=

i.e. the coefficient of z' in

(1-2)0 -2 A-200-290-23) A-2)0 -2 -2 - 2™

z + -+ ,.. : _ (D)

("\

m
L | ]
- (1-2)1 -22)1 -2 ... 4-aM
So pé(n)xn =1+ = + : g +
L n=0 (1 -z)(1 -22) (1 -2)(1 -2 -3 -a")
o0 Zj )
+ = Z «*? 1 (1 - .xm)‘l,
L J=0 m=1
E [ ?_0 - ZJ—A;
L-- and Z po(n):x:n = ) <70 n Q- acm)"l, so that
n=0 J=i m=1
[ e 1.7 © n " m x
)] {pe(n) = po(m)jx = Vo)t om (-2l =1 - =t
n=0 ' n=0 m=1
t N %2 _ x3 N x ~

(1 -2 -a2)(1 -2 - 2 - x5

rre
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L The theorem implies that (A) = (B) = (C) = (D), so we have bases
for algebraic proofs. For a third proof we show that (c) = (D). Let
Fa) = 1 (1 +ad")t = : =
[ m=1 (1 +ax)(l+ax?)(l +ax3) ...
x n " _ e.a qzaz
[ Joed moG-dDT a1 e ——+ —+
n=0 m=1 1= (1 -2)(1-x?)
[ c3a3
+ - + < e (@0 = l)o
(1 —x2)(l - 2?)(1 - x°)
L Then Flaw) = T (1 + axd' )=t = - S— =
m=1 (1 + ax?) (1 + axd) (1 + ax) ..
Lw hea . ciax c,a’x?. B ega’zd
| o= (1 4 ax)F(a)-= 1 + + -4 —
L ' l-2 (L-2)1 =22 (I-2)1 =221 -2x3)
[ © " n m
E' Fooe. = 2 c,a T (L -a )~l. Equating ceefficients of an,
n=0 m=1 -
o1 - °n. |
¥ _ — : — =
L (1-2)1-22) .. A=-2"7) (A-2)1=-22) ... A-2)
r n
L % | n
= n=1,2,...), ¢ ==xc¢_ ., c = (=x)
_ (1 =) coo (1 =a) n n-l n -
I.’.
-
(n=0,1,2,...). Therefore
v
¥
-

-

res
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A _ax _

(L +ax)(1 + ax?) (L + ax®) ... Cl-x (O -xy(do-x?)

1]

3,3 e F gl - '
a’x _ S , _ _
+ ——— 4 -+ -+ (1)

(- =2 -a) Q-2 -2 -2 = ")

Put @ = 1 and the result follows. a = —1 glves the class1cal identity
of Euler concerning the generating function for p(n) In fact, since .
(C) is the generating function for p(n),;apart from the signs in. the

factors, we have a fourth and even more direct proof. 'ertexlt as

— S P TP P S
(1= gt ¢ gt o WAL AN | ce) (L= 22 +-m?f2 - x%+2f2 +

24+2+242 . 343 44343 - 3¥3+3+3

+ _mégﬂl—x5+x - +xt S e maadema

¥

and we see thet this.eoumerates‘the;partitioos:offh,jexééh%fthet;'wheo-‘
ever an odd nombet of ahy‘one eiZQ of‘paft'ooeote,jé;minoersighfis .
ineluded,-so that the»conttibﬁtion~to_ﬁn will-he ooeitive:otvnééetiVe;
according as the number of parts in the partitlon 1$ eVen or odd ’

I.e. 1t is the generating function -
= ¢ >y B " '
Z ip. (n) -p (n)llx
i . . X

in Wthh we are 1nterested

If, in (1) we Writé ar ~'xg¢ we.have two forms for the generating

R

I 6,9 ~p,9 m",

function

e

where p (0 )(n) =P, (n) and P, ( )(n) is’ the number of partltlons of m

into an even number of'parts, aach greater,than‘g,-and simllarly,for S
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generalization of the driginal theorem.

1493 )

(n), but this does not appear to lead to any simply stated

Table of values of p (1) from » = 0 to 100.
] 0 10 20 30 40 50 60- 70 - 80 90 100
o| 1 2 7 18 4 98 209 408 784 1433 2574
1| 1 2 8 20 49 107 223 437 833 1523
2 o 3 8 23 52 117 236 471 881 1621
3| 1 3 9 25 57 125 255 501 939 1717
41 1 3 11 26 63 133 276 530 1004 1814-
s | 1 4 12 29 68 144 294 568 ° 1065 1925
6| 1 5 12 33 72 157 312 609 1126 ~ 2048
71 1 5 14 35 78 168 335 647 1199 2166
8| 2 5 16 37 87 178 361 686 1279 2286
9| 2 6 17 41 93 192 385 732 1355 2425
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