login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000679 Number of groups of order 2^n.
(Formerly M1470 N0581)
19
1, 1, 2, 5, 14, 51, 267, 2328, 56092, 10494213, 49487365422 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

James Gleick, Faster, Vintage Books, NY, 2000 (see pp. 259-261).

M. Hall, Jr. and J. K. Senior, The Groups of Order 2^n (n <= 6). Macmillan, NY, 1964.

Newman, M. F. and O'Brien, E. A.; A CAYLEY library for the groups of order dividing 128. Group theory (Singapore, 1987), 437-442, de Gruyter, Berlin-New York, 1989.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=0..10.

Hans Ulrich Besche and Bettina Eick, Construction of finite groups, Journal of Symbolic Computation, Vol. 27, No. 4, Apr 15 1999, pp. 387-404.

Hans Ulrich Besche and Bettina Eick, The groups of order at most 1000 except 512 and 768, Journal of Symbolic Computation, Vol. 27, No. 4, Apr 15 1999, pp. 405-413.

Hans Ulrich Besche and Bettina Eick; E. A. O'Brien, The groups of order at most 2000, Electron. Res. Announc. Amer. Math. Soc. 7 (2001), 1-4.

Hans Ulrich Besche, The Small Groups library

Bettina Eick and E. A. O'Brien, Enumerating p-groups. Group theory. J. Austral. Math. Soc. Ser. A 67 (1999), no. 2, 191-205.

R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990), no. 1, 3-20. [Annotated scanned copy]

Rodney James and John Cannon, Computation of isomorphism classes of p-groups, Mathematics of Computation 23.105 (1969): 135-140.

R. James, M. F. Newman, and E. A. O'Brien, The Groups of Order 128, J. Algebra 129, 136-158, 1990.

G. A. Miller, Determination of all the groups of order 64, Amer. J. Math., 52 (1930), 617-634.

E. A. O'Brien, The Groups of Order 256 J. Algebra 143, 219-235, 1991.

E. Rodemich, The groups of order 128, J. Algebra 67 (1980), no. 1, 129-142.

Eric Weisstein's World of Mathematics, Finite Group

M. Wild, The groups of order 16 made easy, Amer. Math. Monthly, 112 (No. 1, 2005), 20-31.

Index entries for sequences related to groups

FORMULA

a(n) = 2^((2/27)n^3 + O(n^(8/3))).

EXAMPLE

G.f. = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 51*x^5 + 267*x^6 + 2328*x^7 + ...

MAPLE

seq(GroupTheory:--NumGroups(2^n), n=0..10); # Robert Israel, Oct 15 2017

MATHEMATICA

Join[{1}, FiniteGroupCount[2^Range[10]]] (* Vincenzo Librandi, Mar 28 2018 *)

PROG

(GAP) A000679 := List([0..8], n -> NumberSmallGroups(2^n)); # Muniru A Asiru, Oct 15 2017

CROSSREFS

Cf. A000001, A046058.

Sequence in context: A000109 A049338 A115275 * A266932 A243787 A275825

Adjacent sequences:  A000676 A000677 A000678 * A000680 A000681 A000682

KEYWORD

nonn,hard,more,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

a(9) and a(10) found by Eamonn O'Brien

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 22 03:07 EDT 2018. Contains 305646 sequences. (Running on oeis4.)