%I #16 May 19 2024 09:42:14
%S 1,0,1,0,6,40,17760,2096640,29659631400
%N Number of normalized Latin squares of order n containing no 2 X 2 Latin subsquare.
%H B. D. McKay and E. Rogoyski, <a href="https://doi.org/10.37236/1222">Latin squares of order ten</a>, Electron. J. Combinatorics, 2 (1995) #N3.
%H B. D. McKay and I. M. Wanless, <a href="https://doi.org/10.1006/jcta.1998.2947">Most Latin squares have many subsquares</a>, J. Combin. Theory A 86 (1999), 323-347.
%H <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>
%Y Cf. A097548, A097549.
%K nonn,more
%O 1,5
%A _Brendan McKay_