

A000610


Number of selfcomplementary Boolean functions of n variables: see Comments for precise definition.
(Formerly M1714 N0678)


5




OFFSET

1,2


COMMENTS

Number of selfcomplementary equivalence classes under the group G_n (a permutation group on the domain of Boolean functions, containing the symmetric group S_n and the group C_{2^n} of all 2^n complementations of variables).  R. J. Mathar, Apr 14 2010


REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=1..9.
B. Elspas, Selfcomplementary symmetry types of Boolean functions, IEEE Transactions on Electronic Computers 2, no. EC9 (1960): 264266. [Annotated scanned copy]
M. A. Harrison, The number of equivalence classes of Boolean functions under groups containing negation, IEEE Trans. Electron. Comput. 12 (1963), 559561.
M. A. Harrison, The number of equivalence classes of Boolean functions under groups containing negation, IEEE Trans. Electron. Comput. 12 (1963), 559561. [Annotated scanned copy]
E. M. Palmer and R. W. Robinson, Enumeration of selfdual configurations Pacific J. Math., 110 (1984), 203221.
I. Toda, On the number of types of selfdual logical functions, IEEE Trans. Electron. Comput., 11 (1962), 282284.
I. Toda, On the number of types of selfdual logical functions (annotated scanned copy)
Index entries for sequences related to Boolean functions


CROSSREFS

Cf. A001320.
Sequence in context: A007018 A100016 A344562 * A023363 A091241 A198076
Adjacent sequences: A000607 A000608 A000609 * A000611 A000612 A000613


KEYWORD

nonn,nice,easy


AUTHOR

N. J. A. Sloane


EXTENSIONS

More terms from Vladeta Jovovic, Feb 23 2000


STATUS

approved



