login
Number of 4 X n normalized Latin rectangles.
3

%I #20 Nov 30 2018 03:04:53

%S 4,56,6552,1293216,420909504,207624560256,147174521059584,

%T 143968880078466048,188237563987982390784,320510030393570671051776,

%U 695457005987768649183581184,1888143905499961681708381310976,6314083806394358817244705266941952,25655084790196439186603345691314159616

%N Number of 4 X n normalized Latin rectangles.

%D S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127.

%H Sheng Lin, Xiaoguang Liu and Douglas S. Stones, Gang Wang, <a href="/A000573/b000573.txt">Table of n, K(4,n) for n=4..150</a>

%H P. G. Doyle, <a href="http://arxiv.org/abs/math/0703896">The number of Latin rectangles</a>, arXiv:math/0703896v1 [math.CO], 2007.

%H B. D. McKay and E. Rogoyski, <a href="http://www.combinatorics.org/Volume_2/volume2.html#N3">Latin squares of order ten</a>, Electron. J. Combinatorics, 2 (1995) #N3.

%H Douglas Stones, <a href="http://code.google.com/p/latinrectangles/downloads/list">Doyle's formula for the number of reduced 6xn Latin rectangles</a>

%H Douglas Stones, <a href="http://combinatoricswiki.org/wiki/Enumeration_of_Latin_Squares_and_Rectangles">Enumeration Of Latin Squares And Rectangles</a>

%H D. S. Stones, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v17i1a1">The many formulas for the number of Latin rectangles</a>, Electron. J. Combin 17 (2010), A1.

%H D. S. Stones and I. M. Wanless, <a href="http://dx.doi.org/10.1016/j.jcta.2009.03.019">Divisors of the number of Latin rectangles</a>, J. Combin. Theory Ser. A 117 (2010), 204-215.

%H R. J. Stones, S. Lin, X. Liu, G. Wang, <a href="http://dx.doi.org/10.1007/s00373-015-1643-1">On Computing the Number of Latin Rectangles</a>, Graphs and Combinatorics (2016) 32:1187-1202; DOI 10.1007/s00373-015-1643-1.

%H <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>

%Y Cf. A003170, A001009.

%K nonn,nice

%O 4,1

%A _Brendan McKay_ and Eric Rogoyski