login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000526 Partially labeled trees with n nodes (5 of which are labeled).
(Formerly M5387 N2340)
9
125, 1296, 8716, 47787, 232154, 1040014, 4395772, 17781210, 69498964, 264248924, 982218072, 3582421612, 12857819052, 45515994861, 159205157535, 551049504784, 1889714853263, 6427147635062, 21698583468717 (list; graph; refs; listen; history; text; internal format)
OFFSET

5,1

REFERENCES

J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 5..200

Index entries for sequences related to trees

FORMULA

G.f.: A(x) = B(x)^5*(125-204*B(x)+118*B(x)^2-24*B(x)^3)/(1-B(x))^7, where B(x) is g.f. for rooted trees with n nodes, cf. A000081.

MAPLE

b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n, k) option remember; add(b(n+1-j*k), j=1..iquo(n, k)) end: B:= proc(n) option remember; add(b(k)*x^k, k=1..n) end: a:= n-> coeff(series(B(n-4)^5* (125-204*B(n-4) +118*B(n-4)^2 -24*B(n-4)^3)/ (1-B(n-4))^7, x=0, n+1), x, n): seq(a(n), n=5..23); # Alois P. Heinz, Aug 21 2008

MATHEMATICA

b[n_] := b[n] = If[n <= 1, n, Sum[k*b[k]*s[n-1, k], {k, 1, n-1}]/(n-1)]; s[n_, k_] := s[n, k] = Sum[b[n + 1 - j*k], {j, 1, Quotient[n, k]}]; B[n_] := B[n] = Sum[b[k]*x^k, {k, 1, n}]; a[n_] := SeriesCoefficient[B[n-4]^5*(125 - 204*B[n-4] + 118*B[n-4]^2 - 24*B[n-4]^3)/(1 - B[n-4])^7, {x, 0, n}]; Table[a[n], {n, 5, 23}] (* Jean-Fran├žois Alcover, Mar 20 2014, after Alois P. Heinz *)

CROSSREFS

Cf. A000055, A000107, A000243, A000269, A000444, A000485, A000524, A000525.

Sequence in context: A204795 A243240 A237713 * A016971 A030082 A017043

Adjacent sequences:  A000523 A000524 A000525 * A000527 A000528 A000529

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Vladeta Jovovic, Oct 19 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 18:28 EDT 2018. Contains 316377 sequences. (Running on oeis4.)