login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000485 Partially labeled trees with n nodes (4 of which are labeled).
(Formerly M5008 N2156)
9
16, 125, 680, 3135, 13155, 51873, 195821, 715614, 2550577, 8911942, 30640888, 103951415, 348724844, 1158722880, 3818514232, 12493703403, 40620949971, 131336770375, 422536529249, 1353341880777, 4317248276746, 13722302173753 (list; graph; refs; listen; history; text; internal format)
OFFSET

4,1

REFERENCES

J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 4..1000

Index entries for sequences related to trees

FORMULA

G.f.: A(x) = B(x)^4*(16-19*B(x)+6*B(x)^2)/(1-B(x))^5, where B(x) is g.f. for rooted trees with n nodes, cf. A000081.

MAPLE

b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n, k) option remember; add(b(n+1-j*k), j=1..iquo(n, k)) end: B:= proc(n) option remember; add(b(k)*x^k, k=1..n) end: a:= n-> coeff(series(B(n-3)^4*(16-19*B(n-3)+6*B(n-3)^2)/(1-B(n-3))^5, x=0, n+1), x, n): seq(a(n), n=4..25); # Alois P. Heinz, Aug 21 2008

MATHEMATICA

b[n_] := b[n] = If[n <= 1, n, Sum[k*b[k]*s[n-1, k], {k, 1, n-1}]/(n-1)]; s[n_, k_] := s[n, k] = Sum[b[n+1-j*k], {j, 1, Quotient[n, k]}]; B[n_] := B[n] = Sum[b[k]*x^k, {k, 1, n}]; a[n_] := SeriesCoefficient[B[n-3]^4*(16-19*B[n-3] + 6*B[n-3]^2)/(1-B[n-3])^5, {x, 0, n}]; Table[a[n], {n, 4, 25}] (* Jean-Fran├žois Alcover, Mar 20 2014, after Alois P. Heinz *)

CROSSREFS

Cf. A000055, A000107, A000243, A000269, A000444, A000524, A000525, A000526.

Sequence in context: A126511 A231582 A067442 * A264625 A213748 A007787

Adjacent sequences:  A000482 A000483 A000484 * A000486 A000487 A000488

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Vladeta Jovovic, Oct 19 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 28 21:25 EDT 2017. Contains 284246 sequences.