This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000485 Partially labeled trees with n nodes (4 of which are labeled). (Formerly M5008 N2156) 9
 16, 125, 680, 3135, 13155, 51873, 195821, 715614, 2550577, 8911942, 30640888, 103951415, 348724844, 1158722880, 3818514232, 12493703403, 40620949971, 131336770375, 422536529249, 1353341880777, 4317248276746, 13722302173753 (list; graph; refs; listen; history; text; internal format)
 OFFSET 4,1 REFERENCES J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 4..1000 FORMULA G.f.: A(x) = B(x)^4*(16-19*B(x)+6*B(x)^2)/(1-B(x))^5, where B(x) is g.f. for rooted trees with n nodes, cf. A000081. MAPLE b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n, k) option remember; add(b(n+1-j*k), j=1..iquo(n, k)) end: B:= proc(n) option remember; add(b(k)*x^k, k=1..n) end: a:= n-> coeff(series(B(n-3)^4*(16-19*B(n-3)+6*B(n-3)^2)/(1-B(n-3))^5, x=0, n+1), x, n): seq(a(n), n=4..25); # Alois P. Heinz, Aug 21 2008 MATHEMATICA b[n_] := b[n] = If[n <= 1, n, Sum[k*b[k]*s[n-1, k], {k, 1, n-1}]/(n-1)]; s[n_, k_] := s[n, k] = Sum[b[n+1-j*k], {j, 1, Quotient[n, k]}]; B[n_] := B[n] = Sum[b[k]*x^k, {k, 1, n}]; a[n_] := SeriesCoefficient[B[n-3]^4*(16-19*B[n-3] + 6*B[n-3]^2)/(1-B[n-3])^5, {x, 0, n}]; Table[a[n], {n, 4, 25}] (* Jean-François Alcover, Mar 20 2014, after Alois P. Heinz *) CROSSREFS Cf. A000055, A000107, A000243, A000269, A000444, A000524, A000525, A000526. Sequence in context: A126511 A231582 A067442 * A264625 A213748 A007787 Adjacent sequences:  A000482 A000483 A000484 * A000486 A000487 A000488 KEYWORD nonn AUTHOR EXTENSIONS More terms from Vladeta Jovovic, Oct 19 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 17:51 EDT 2019. Contains 324234 sequences. (Running on oeis4.)