login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000454 Unsigned Stirling numbers of first kind s(n,4).
(Formerly M4730 N2022)
10
1, 10, 85, 735, 6769, 67284, 723680, 8409500, 105258076, 1414014888, 20313753096, 310989260400, 5056995703824, 87077748875904, 1583313975727488, 30321254007719424, 610116075740491776 (list; graph; refs; listen; history; text; internal format)
OFFSET

4,2

COMMENTS

Number of permutations of n elements with exactly 4 cycles.

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 217.

F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Shanzhen Gao, Permutations with Restricted Structure (in preparation) [From Shanzhen Gao, Sep 14 2010]

LINKS

T. D. Noe, Table of n, a(n) for n=4..100

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 33

FORMULA

Let P(n+2,X)=(X+1)(X+2)(X+3)...(X+n+2); then a(n) is the coefficient of X^3; or a(n)=P'''(n+2,0)/3! - Benoit Cloitre, May 09 2002

E.g.f.: (-log(1-x))^4/4! or (1-x)^-1 * (-log(1-x))^3. [Corrected by Joerg Arndt, Oct 05 2009]

a(n) is coefficient of x^(n+4) in (-log(1-x))^4, multiplied by (n+4)!/4!

[h(n-1, 1)^3-3*h(n-1, 1)*h(n-1, 2)+2*h(n-1, 3)]*(n-1)!/3!, h(n, r)=sum(1/i^r, i=1..n).

a(n) = det(S(i+4,j+3)|, 1 <= i,j <= n-4), where S(n,k) are Stirling numbers of the second kind. [Mircea Merca, Apr 06 2013]

EXAMPLE

(-log(1-x))^4 = x^4 + 2*x^5 + 17/6*x^6 + 7/2*x^7 + ...

MATHEMATICA

Abs[StirlingS1[Range[4, 20], 4]] (* Harvey P. Dale, Aug 26 2011 *)

PROG

(PARI) for(n=3, 50, print1(polcoeff(prod(i=1, n, x+i), 3, x), ", "))

sage: [stirling_number1(i, 4) for i in xrange(4, 22)] - Zerinvary Lajos, Jun 27 2008

CROSSREFS

Cf. A000254, A000399, A000482, A001233, A008275 (Stirling1 triangle).

Sequence in context: A144639 A233667 A038235 * A145146 A184122 A228123

Adjacent sequences:  A000451 A000452 A000453 * A000455 A000456 A000457

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jan 18 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 17 03:13 EDT 2014. Contains 240628 sequences.