This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000442 a(n) = (n!)^3. 20
 1, 1, 8, 216, 13824, 1728000, 373248000, 128024064000, 65548320768000, 47784725839872000, 47784725839872000000, 63601470092869632000000, 109903340320478724096000000, 241457638684091756838912000000, 662559760549147780765974528000000, 2236139191853373760085164032000000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Permanent of upper right n X n corner of multiplication table (A003991). - Marc LeBrun, Dec 11 2003 a(n) is the number of set partitions of {1, 2, ..., 4n - 1, 4n} into blocks of size 4 in which the entries of each block mod 4 are distinct. For example, a(2) = 8 counts 1234-5678, 1678-2345, 1278-3456, 1346-2578, 1238-4567, 1467-2358, 1247-3568, 1368-2457. - David Callan, Mar 30 2007 a(n) is also the determinant of the symmetric n X n matrix M defined by M(i, j) = sigma_3(gcd(i, j)) for 1 <= i,j <= n, and n > 0, where sigma_3 is A001158. - Enrique Pérez Herrero, Aug 13 2011 REFERENCES F. Smarandache, "Properties of the Numbers", University of Craiova Archives, 1975; Arizona State University Special Collections, Tempe, AZ LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..100 G. S. Kazandzidis, On a Conjecture of Moessner and a General Problem, Bull. Soc. Math. Grece, Nouvelle Série - vol. 2, fasc. 1-2, pp. 23-30, 1961. FORMULA a(n) = det(S(i+3, j), 1 <= i, j <= n), where S(n, k) are Stirling numbers of the second kind. - Mircea Merca, Apr 04 2013 From Karol A. Penson, Jul 28 2013: (Start) G.f. of hypergeometric type: sum(a(n)*z^n/(n!)^3, n = 0..infinity) = 1/(1-z); Integral representation as n-th moment of a positive function w(x) on a positive halfaxis (solution of the Stieltjes moment problem), in Maple notation: a(n) = int(x^n*w(x), x = 0..infinity), n >= 0, where w(x) = MeijerG([[], []], [[0, 0, 0]], []], x), w(0) = infinity, limit(w(x), x = infinity) = 0. w(x) is monotonically decreasing over (0, infinity). The Meijer G function above cannot be represented by any other known special function. This solution of the Stieltjes moment problem is not unique. Asymptotics: a(n) -> (1/16)*sqrt(2)*Pi^(3/2)*(32*n^2 + 8*n + 1)*(n)^(-1/2+3*n)*exp(-3*n), for n -> infinity. (End) MAPLE seq((n!)^3, n=0..14), # Karol A. Penson, Jul 28 2013 MATHEMATICA Table[(n!)^3, {n, 0, 20}] (* Stefan Steinerberger, Apr 14 2006 *) PROG (PARI) a(n)=n!^3 \\ Charles R Greathouse IV, Jan 12 2012 (MAGMA) [Factorial(n)^3: n in [0..15]]; // Vincenzo Librandi, Jan 13 2012 CROSSREFS Cf. A003991. Row n=3 of A225816. Sequence in context: A002897 A024289 A009106 * A268471 A226524 A115964 Adjacent sequences:  A000439 A000440 A000441 * A000443 A000444 A000445 KEYWORD nonn,easy AUTHOR R. Muller STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.