login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000397 Number of partitions into non-integral powers.
(Formerly M4212 N1757)
2
6, 32, 109, 288, 654, 1337, 2506, 4414, 7379, 11822, 18273, 27356, 39938, 56974, 79607, 109267, 147523, 196295, 257715, 334407, 429086, 545034, 685917, 855886, 1059360, 1301776, 1588321, 1925620, 2320544, 2780468, 3314007, 3930001, 4638319, 5449943, 6376505, 7430471, 8625369, 9976540, 11498855, 13210238, 15128487, 17272896, 19664754, 22326319, 25280987, 28554486, 32173404, 36166409, 40563607, 45397395, 50701682, 56512012, 62866699, 69805531, 77370606, 85607286, 94560129, 104280410, 114819255, 126229853, 138570284, 151899428, 166278945, 181775849, 198456941, 216394746, 235661505, 256338017, 278503009, 302242623, 327644632, 354799834, 383805368, 414759214, 447764499, 482931051 (list; graph; refs; listen; history; text; internal format)
OFFSET

5,1

COMMENTS

a(n) counts the solutions to the inequality x_1^(1/2)+x_2^(1/2)+x_3^((1/2)<=n for any three distinct integers 1<=x_1<x_2<x_3. - R. J. Mathar, Jul 03 2009

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=5..80.

B. K. Agarwala, F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216.

B. K. Agarwala and F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216. [Annotated scanned copy]

MAPLE

A000397 := proc(n) local a, x1, x2, x3 ; a := 0 ; for x1 from 1 to n^2 do for x2 from x1+1 to floor( (n-x1^(1/2))^2 ) do x3 := (n-x1^(1/2)-x2^(1/2))^2 ; if floor(x3) >= x2+1 then a := a+floor(x3-x2) ; fi; od: od: a ; end: for n from 5 do printf("%d, \n", A000397(n)) ; od: # R. J. Mathar, Sep 29 2009

MATHEMATICA

A000397[n_] := Module[{a, x1, x2, x3}, a = 0; For[x1 = 1, x1 <= n^2, x1++, For[x2 = x1+1, x2 <= Floor[(n-x1^(1/2))^2], x2++, x3 = (n-x1^(1/2) - x2^(1/2))^2 ; If[Floor[x3] >= x2+1, a = a + Floor[x3-x2]]]]; a]; Reap[ For[n = 5, n <= 40, n++, Print[an = A000397[n]; Sow[an]]]][[2, 1]] (* Jean-Fran├žois Alcover, Feb 08 2016, after R. J. Mathar *)

CROSSREFS

Sequence in context: A288961 A090382 A102359 * A200765 A239573 A130410

Adjacent sequences:  A000394 A000395 A000396 * A000398 A000399 A000400

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from R. J. Mathar, Sep 29 2009

More terms from Sean A. Irvine, Nov 14 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 24 04:27 EDT 2017. Contains 292403 sequences.