login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000362 Generalized class numbers c_(n,2).
(Formerly M4016 N1664)
4
5, 57, 352, 1280, 3522, 7970, 15872, 29184, 49410, 79042, 122400, 180224, 257314, 362340, 492032, 655360, 867588, 1117314, 1420320, 1803264, 2237380, 2745154, 3380736, 4080640, 4881250, 5874150, 6928416, 8126464, 9600870, 11133604 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Let L_a(s) = sum_{k>=0} (-a|2k+1) /(2k+1)^s be a Dirichlet series, where (-a|2k+1) is the Jacobi symbol. Then the c_(a,n) are defined by L_a(2n+1) = (pi/(2a))^(2n+1)*sqrt(a)*c_(a,n)/(2n)! for n=0,1,2,..., a=1,2,3...

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=1..30.

D. Shanks, Generalized Euler and class numbers. Math. Comp. 21 (1967) 663-688.

D. Shanks, Corrigenda to: "Generalized Euler and class numbers", Math. Comp. 22 (1968), 699

D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy]

MATHEMATICA

amax = 30;   km0 = 10; Clear[cc]; L[a_, s_, km_] := Sum[JacobiSymbol[-a, 2 k+1]/(2k+1)^s, {k, 0, km}]; c[1, n_, km_] := 2(2n)! L[1, 2n+1, km] (2 / Pi)^(2n+1) // Round; c[a_ /; a>1, n_, km_] := (2n)! L[a, 2n+1, km] (2a / Pi)^(2n+1)/Sqrt[a] // Round; cc[km_] := cc[km] = Table[c[a, n, km], {a, 1, amax}, {n, 0, nmax}]; cc[km0]; cc[km = 2km0]; While[cc[km] != cc[km/2, km = 2km]]; A000362[a_] := cc[km][[a, 3]]; Table[A000362[a], {a, 1, amax} ] (* Jean-Fran├žois Alcover, Feb 08 2016 *)

CROSSREFS

Cf. A000233, A000508.

Sequence in context: A196340 A196319 A197304 * A196971 A197558 A218658

Adjacent sequences:  A000359 A000360 A000361 * A000363 A000364 A000365

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 02 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 18 12:18 EDT 2017. Contains 290720 sequences.