%I M3979 N1648 #52 Feb 01 2022 00:54:13
%S 1,1,5,35,315,3455,44590,660665,11035095,204904830,4183174520,
%T 93055783320,2238954627848,57903797748386,1601122732128779,
%U 47120734323344439,1470076408565099152,48449426629560437576,1681560512531504058350,61293054886119796799892
%N Number of 5-level labeled rooted trees with n leaves.
%D J. de la Cal, J. Carcamo, Set partitions and moments of random variables, J. Math. Anal. Applic. 378 (2011) 16 doi:10.1016/j.jmaa.2011.01.002 Remark 5
%D J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
%D T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures, Phys. Review A 32 (1985), 2338-2346.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Alois P. Heinz, <a href="/A000357/b000357.txt">Table of n, a(n) for n = 0..400</a>
%H P. J. Cameron, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL3/groups.html">Sequences realized by oligomorphic permutation groups</a>, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
%H Jekuthiel Ginsburg, <a href="/A000405/a000405.pdf">Iterated exponentials</a>, Scripta Math., 11 (1945), 340-353. [Annotated scanned copy]
%H Gottfried Helms, <a href="http://go.helms-net.de/math/binomial/04_5_SummingBellStirling.pdf">Bell Numbers</a>, 2008.
%H T. Hogg and B. A. Huberman, <a href="/A000258/a000258.pdf">Attractors on finite sets: the dissipative dynamics of computing structures</a>, Phys. Review A 32 (1985), 2338-2346. (Annotated scanned copy)
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=294">Encyclopedia of Combinatorial Structures 294</a>
%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%F E.g.f.: exp(exp(exp(exp(exp(x)-1)-1)-1)-1).
%p g:= proc(p) local b; b:=proc(n) option remember; if n=0 then 1 else (n-1)! *add(p(k)*b(n-k)/ (k-1)!/ (n-k)!, k=1..n) fi end end: a:= g(g(g(g(1)))): seq(a(n), n=0..30); # _Alois P. Heinz_, Sep 11 2008
%t max = 17; Join[{1}, MatrixPower[Array[StirlingS2, {max, max}], 5][[All, 1]]] (* _Jean-François Alcover_, Mar 03 2014 *)
%Y a(n)=|A039813(n,1)| (first column of triangle).
%Y Cf. A000110, A000258, A000307, A000405, A001669.
%Y Column k=4 of A144150.
%K nonn,easy
%O 0,3
%A _N. J. A. Sloane_
%E Extended with new description by _Christian G. Bower_, Aug 15 1998