login
a(0)=1, a(n) = 3*a(n-1) + n + 1.
(Formerly M3882 N1592)
28

%I M3882 N1592 #83 Dec 11 2022 08:04:51

%S 1,5,18,58,179,543,1636,4916,14757,44281,132854,398574,1195735,

%T 3587219,10761672,32285032,96855113,290565357,871696090,2615088290,

%U 7845264891,23535794695,70607384108,211822152348,635466457069

%N a(0)=1, a(n) = 3*a(n-1) + n + 1.

%C From _Johannes W. Meijer_, Feb 20 2009: (Start)

%C Second right hand column (n-m=1) of the A156920 triangle.

%C The generating function of this sequence enabled the analysis of the polynomials A156921 and A156925.

%C (End)

%C Partial sums of A003462, and thus the second partial sums of A000244 (3^n). Also column k=2 of A106516. - _John Keith_, Jan 04 2022

%D F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vincenzo Librandi, <a href="/A000340/b000340.txt">Table of n, a(n) for n = 0..1000</a>

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=389">Encyclopedia of Combinatorial Structures 389</a>

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992

%H László Tóth, <a href="https://arxiv.org/abs/2002.06584">On Schizophrenic Patterns in b-ary Expansions of Some Irrational Numbers</a>, arXiv:2002.06584 [math.NT], 2020. Mentions this sequence. See also <a href="https://doi.org/10.1090/proc/14863">Proc. Amer. Math. Soc.</a> 148 (2020), 461-469.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,-7,3).

%F G.f.: 1/((1-3*x)*(1-x)^2).

%F a(n) = (3^(n+2) - 2*n - 5)/4.

%F a(n) = Sum_{k=0..n+1} (n-k+1)*3^k = Sum_{k=0..n+1} k*3^(n-k+1). - _Paul Barry_, Jul 30 2004

%F a(n) = Sum_{k=0..n} binomial(n+2, k+2)*2^k. - _Paul Barry_, Jul 30 2004

%F a(-1)=0, a(0)=1, a(n) = 4*a(n-1) - 3*a(n-2) + 1. - _Miklos Kristof_, Mar 09 2005

%F a(n) = 5*a(n-1) - 7*a(n-2) + 3*a(n-3). - _Johannes W. Meijer_, Feb 20 2009

%F a(-2 - n) = 3^-n * A014915(n). - _Michael Somos_, May 28 2014

%e G.f. = 1 + 5*x + 18*x^2 + 58*x^3 + 179*x^4 + 543*x^5 + 1636*x^6 + ...

%p a[ -1]:=0:a[0]:=1:for n from 1 to 50 do a[n]:=4*a[n-1]-3*a[n-2]+1 od: seq(a[n],n=0..50); # _Miklos Kristof_, Mar 09 2005

%p A000340:=-1/(3*z-1)/(z-1)**2; # conjectured by _Simon Plouffe_ in his 1992 dissertation

%t a[ n_] := MatrixPower[ {{1, 0, 0}, {1, 1, 0}, {1, 1, 3}}, n + 1][[3, 1]]; (* _Michael Somos_, May 28 2014 *)

%t RecurrenceTable[{a[0]==1,a[n]==3a[n-1]+n+1},a,{n,30}] (* or *) LinearRecurrence[{5,-7,3},{1,5,18},30] (* _Harvey P. Dale_, Jan 31 2017 *)

%o (Magma) [(3^(n+2)-2*n-5)/4: n in [0..30]]; // _Vincenzo Librandi_, Aug 15 2011

%Y From _Johannes W. Meijer_, Feb 20 2009: (Start)

%Y Cf. A156921, A156925, A156927, A156933. Other columns A156922, A156923, A156924.

%Y Equals A156920 second right hand column.

%Y Equals A142963 second right hand column divided by 2^n.

%Y Equals A156919 second right hand column divided by 2.

%Y (End)

%Y Cf. A014915.

%Y Equals column k=1 of A008971 (shifted). - _Jeremy Dover_, Jul 11 2021

%Y Cf. A000340, A003462 (first differences), A106516.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, _Simon Plouffe_