login
a(n) = a(n-1)^3 + a(n-2) with a(0)=0, a(1)=1.
1

%I #30 May 08 2020 17:39:57

%S 0,1,1,2,9,731,390617900,59601394712394173339000731,

%T 211723599072542785377729319366442939995427829921816290889198752331804918235791

%N a(n) = a(n-1)^3 + a(n-2) with a(0)=0, a(1)=1.

%H John Cerkan, <a href="/A000284/b000284.txt">Table of n, a(n) for n = 0..10</a>

%F For n>0, a(n) = floor(c^(3^n)) where c=1.0275090796393628012075291021962112731026759143420911102331653107087209649910... - _Gerald McGarvey_, Nov 28 2007

%p A000284 := proc(n) option remember; if n <= 1 then n else A000284(n-2)+A000284(n-1)^3; fi; end;

%p a[-2]:=0: a[-1]:=1: a[0]:=1: a[1]:=2: for n from 2 to 6 do a[n]:=a[n-1]^3+a[n-2] od: seq(a[n], n=-2..6); # _Zerinvary Lajos_, Mar 19 2009

%t RecurrenceTable[{a[n] == a[n-1]^3 + a[n-2], a[0] == 0, a[1] == 1}, a, {n, 0, 8}] (* _Jean-François Alcover_, Feb 06 2016 *)

%t nxt[{a_,b_}]:={b,b^3+a}; NestList[nxt,{0,1},9][[All,1]] (* _Harvey P. Dale_, May 08 2020 *)

%Y Cf. A058182.

%K nonn,easy

%O 0,4

%A Stephen J. Greenfield (greenfie(AT)math.rutgers.edu)

%E a(9) from _Vincenzo Librandi_, Apr 26 2010