The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000283 a(n) = a(n-1)^2 + a(n-2)^2 for n >= 2 with a(0) = 0 and a(1) = 1. 26

%I

%S 0,1,1,2,5,29,866,750797,563696885165,317754178345286893212434,

%T 100967717855888389973004846476977145423449281581

%N a(n) = a(n-1)^2 + a(n-2)^2 for n >= 2 with a(0) = 0 and a(1) = 1.

%H Vincenzo Librandi, <a href="/A000283/b000283.txt">Table of n, a(n) for n = 0..14</a>

%H Steven J. Miller (ed.), <a href="https://www.jstor.org/stable/j.ctt1dr358t">Benford's Law: Theory and Applications</a>, Princeton University Press, 2015; see page 5.

%F a(0)=0; for n >= 1, a(n) = floor(A^(2^(n-1))), where

%F A=1.235392737785436889622331013228440824347457186913679454733601897236639743839118542826528455451978134... - _Benoit Cloitre_, May 03 2003

%p A000283 := proc(n) option remember; if n <= 1 then n else A000283(n-2)^2+A000283(n-1)^2; fi; end;

%t Join[{a=0,b=1},Table[c=a^2+b^2;a=b;b=c,{n,12}]] (* _Vladimir Joseph Stephan Orlovsky_, Jan 22 2011 *)

%t RecurrenceTable[{a[n + 2] == a[n + 1]^2 + a[n]^2, a[0] == 0, a[1] == 1}, a, {n, 0, 12}] (* _Emanuele Munarini_, Mar 30 2017 *)

%o (PARI) {a(n) = if( n<2, n>0, a(n-1)^2 + a(n-2)^2)}; /* _Michael Somos_, Feb 10 2002 */

%o (Maxima) a(n) := if n=0 then 0 elseif n=1 then 1 else a(n-1)^2 + a(n-2)^2;

%o makelist(a(n),n,0,12); /* _Emanuele Munarini_, Mar 30 2017 */

%Y Cf. A000278.

%K nonn,easy

%O 0,4

%A Stephen J. Greenfield (greenfie(AT)math.rutgers.edu)

%E Name clarified by _David A. Corneth_, Jul 14 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 16:56 EDT 2020. Contains 336381 sequences. (Running on oeis4.)