login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000222 Coefficients of ménage hit polynomials.
(Formerly M2602 N1029)
2
0, 0, 1, 3, 6, 38, 213, 1479, 11692, 104364, 1036809, 11344859, 135548466, 1755739218, 24504637741, 366596136399, 5852040379224, 99283915922264, 1783921946910417, 33840669046326579, 675849838112277598, 14174636583759324798 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

REFERENCES

J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 198.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..150

R. C. Read, Letter to N. J. A. Sloane, Oct. 29, 1976

FORMULA

a(n) ~ 2/exp(2) * n!. - Vaclav Kotesovec, Sep 06 2014

a(n)+2*a(n+p)+a(n+2*p) is divisible by p for any prime p. - Mark van Hoeij, Jun 13 2019

MATHEMATICA

max = 30; f[x_, y_] := Sum[n!*((x*y)^n/(1+x*(y-1))^(2*n+1)), {n, 0, max}]; t = MapIndexed[Take[#1, First[#2]]&, CoefficientList[Series[f[x, y], {x, 0, max}, {y, 0, max}], {x, y}]] ; a[0] = a[1] = 0; a[n_] := t[[n+1, n-1]]; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Mar 11 2014, after Vladeta Jovovic *)

CROSSREFS

A diagonal of A058057.

Sequence in context: A025596 A172361 A114038 * A208649 A203178 A104271

Adjacent sequences:  A000219 A000220 A000221 * A000223 A000224 A000225

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Simon Plouffe

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 16 15:59 EST 2020. Contains 331961 sequences. (Running on oeis4.)