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THE GOLDEN SECTION, PHYLLOTAXIS, AND
WYTHOFF’S GAME

By H. S. M. COXETER

Geometry has two great treasures: one is the Theorem of Pythagoras;
the other, the division of a line into extreme and mean ratio. The first we
may compare to a measure of gold; the second we may name a precious jewel.

—1J. KEPLER (1571-1630)

1. The odd-sounding phrase ‘‘division of a line into extreme and mean
ratio” was used by Euclid to signify division of a line segment into two unequal
parts such that the ratio of the whole to the larger part is equal to the ratio
of the larger to the smaller. Calling each ratio = (after rous, ‘““the section’),
we see that this requires

ri 2= ],
so that 7 is the positive root of the equation

x2—x—-1=0,

Fig. 1

ViZ.,
7 =1/,(v5 + 1) = 1.618033989.. .,
whence
77l =1/)(¥5 —'1), 772 =1/43 — y5).
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136 THE GOLDEN SECTION

The classical construction (Euclid II, 11) is as follows. To divide a given
segment 4 B in extreme and mean ratio (Fig. 1), let E be the mid-point of the
side AC of the square ABDC; take F, on CA produced, so that EF = EB;
take P on AB, so that AP = AF. Then P is the dividing point (such that
AB X PB = AP?). .

Nils Pipping [14] has recently devised a new construction, in the spirit of
Mascheroni and Mohr [11, 12], who proved that every ruler-and-compasses
construction can be duplicated with the compasses alone. Pipping’s division
of the given segment AB requires just seven circles, of three different radii,
as in Fig. 2. The circle A(4B) (with center A and radius AB) meets the
equal circle B(4B) in two points J and K. Then J(JK) determines L,
B(JK) determines M and N, L(JK) determines O, and finally the two circles
M(AO) and N(AO) intersect in a point P which divides AB in extreme and |
mean ratio (as can easily be verified by several applications of Pythagoras’s
Theorem).

It is interesting to compare this with Mascheroni’s third solution to the =
problem of locating the mid-point of a given segment [11, Problem 66], which
likewise requires seven circles.

The division into extreme and mean ratio, later known as the golden section,
was used by Euclid (IV, 10) ‘“‘to construct an isosceles triangle having each
of the angles at the base double of the remaining one” and (IV, 11) “in a
given circle to inscribe an equilateral and equiangular pentagon.” The figure
that he obtained is essentially a regular pentagon with its inscribed star pen-
tagon or pentagram. This can be displayed by tying a simple knot in a long
strip of paper and carefully pressing it flat. In modern notation, the connec-
tion between 7 and the pentagon is expressed by the formula

T = 2 cos 7—;

Euclid’s construction for the pentagon is one of the thirteen properties of 7
described by Fra Luca Pacioli in his book, Divina proportione [13] which was
illustrated by his friend Leonardo da Vinci. Successive chapters are entitled:
The First Considerable Effect; The Second Essential Effect; The Third
Singular Effect; The Fourth Ineffable Effect; The Fifth Admirable Effect;
The Sixth Inexpressible Effect, and so on. ““The Seventh Inestimable Effect”
is that a regular decagon of side 1 has circumradius 7. (We can thus in-
scribe a pentagon in a given circle by first inscribing a decagon and then pick- |
ing out alternate vertices.) ‘“The Ninth Most Excellent Effect” is that two
crossing diagonals of a regular pentagon divide one another in extreme and
mean ratio. ‘“The Twelfth Incomparable Effect” and ‘“The Thirteenth Most
Distinguished Effect” are constructions for the icosahedron and the dodeca- -
hedron. The next chapter tells “‘how, for the sake of our salvation, this list
of effects must end”’ (because there were just thirteen at table at the Last
Supper).

The faces surrounding a corner of the icosahedron belong to a pyramid
whose base is a regular pentagon. Any two opposite edges belong to a rec-
tangle whose longer sides are diagonals of such pentagons. Since the diagonal |
of a pentagon is 7 times its side, this rectangle is a golden rectangle, whose |
sides are in the ratio 7:1. In fact, the twelve vertices of the icosahedron (Fig. |
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Fig. 3

3) are the twelve vertices of three golden rectangles in perpendicular planes
(Fig. 4). Thus [16] the vertices of an icosahedron of edge 2 can be repre-
sented by the coordinates

{0, =1, £7), {£7 0 £1), (&1, =7 D).

Fig. 4
The identity
r=1+4+1/r
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shows that the golden rectangle can be dissected into two pieces: a square
and a smaller golden rectangle. Given the square A BDC, we can construct the =
side CF of the rectangle by Euclid’s method (Fig. 1). From the smaller =
rectangle A BGF (Fig. 5) we can cut off another square, leaving a still smaller y
rectangle, and continue the process indefinitely. Quadrants of circles, in-
scribed in the successive squares, form a composite spiral of rather agreeable
appearance. More interestingly, the end points D, A, H, I, ... of the quad-
rants lie on a true logarithmic spiral whose pole is the point of intersection

CG-BF.
A

C o
~N

o,

D
Fig. 5

It was pointed out by Cundy and Rollett [5] that this spiral cuts each of
the lines CF, FG, GB, BP, ... twice, instead of touching them like the circu-
lar quadrants. In fact, its angle ¢ (between tangent and radius vector) satis-
fies the equation = cot ¢ = 2 log 7, so that ¢ = 72° 58’. But our eyes can
scarcely distinguish it from the logarithmic spiral of angle 74° 39’ (satisfying
T cot ¢ = /5 log tan ¢) which, being its own evolute, has the same contact
properties as the composite spiral of Fig. 5. Of course, the rectangle is no
longer golden; in fact, the ratio of its sides is not

T = 1.6180 ...

but
tan's ¢ = 1.5387 ....

We leave it to the psychologists to decide which of these two rectangular
shapes is the more aesthetically satisfying [6].

In 1202, Leonardo of Pisa, nicknamed Fibonacci (not “son of an ass,’”’ as
has been suggested, but rather ‘“‘son of good nature” or “prosperity’’), came
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across his celébrated sequence of integers in connection with the breeding of
rabbits [1, 9]. He assumed that rabbits live forever, and that every month
each pair begets a new pair which becomes productive at the age of two
months. In the first month the experiment begins with a newborn pair of
rabbits. In the second month, there is still just one pair. In the third
month there are two; in the fourth, three; in the fifth, five; and so on. Let
fa denote the number of pairs of rabbits in the nth month. The first few values
may be tabulated as follows:

1 o ag e g g gy s AAS
£i:1 12358 13 21 34 55 89 144 :

Four centuries later, Girard [7 ] noticed that each of these numbers (after
the second) is equal to the sum of the preceding two:
h=f=1, fare = far1 + fa (n2>1).

Another hundred years passed before Simson [17] observed that fy1/fs is
the nth convergent to the continued fraction

1 1
1+1+1+1+

To see that this converges to 7, he merely had to express the relation r =
1 4+ 1/7 in the form

e L
=Ll sl =

] Simson also obtained the identity
: Jatfatr = f3 = (=1)",

. which yields the following puzzle-dissection [15]. A rectangle fo—y X fat1 is
_cut into four pieces which can apparently be reassembled to form a square of
‘side fu (Fig. 6). The figure should be drawn on squared paper, so that the

~|l'—‘

J_;L
1+ 71+

fos

Fig. 6

audience can ‘‘see’” that there is no cheating. The value n = 6 is sufficient in
' practice, but of course the error is still less detectable when n = 7,

. Lagrange [8] noticed that the residues of the Fibonacci numbers, for any
. given modulus, are periodic; e. g., their final digits (in the denary scale)
repeat after a cycle of sixty:

1,1,2,8 5,8 31,45, 9,4, ..., 7,2 9.1, 0.
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~In 1876, Lucas obtained the identities

=i bt fa = PR b i
Iy Eant g el o poog

More interestingly [10], he discovered the explicit formula in terms of bi-
nomial coefficients:

A e e

which can be established by observing that

1+t4 2204382+ ...+faatt+...=0 —t —) !
=14+0¢+)+ ¢+ + ¢+ + ...

Setting ¢ = 0.01, we obtain the decimal

10000
9899

(which is spoilt by the necessary ‘‘carrying” after the nineteenth significant
digit).
Lucas also observed that the recursion formula

Sare = farr + fa

is satisfied by any linear combination of the nth powers of the roots of the
equation

= 1.0102030508132134559. . .

x2=x-+1,

whence, in virtue of the initial conditions fo = 0, hi=1,

- - (5

= 5= {5 — (=)},

It follows that
™ = Yo(fa V5 + 2a),

where

€n = fn—1 + fn+1-

2. The Fibonacci numbers arise naturally in the botanical phenomenon
called phyllotaxis [19]. In some trees, such as the elm and lime, the leaves
along a twig appear alternately on two opposite sides, and we speak of “!/s
phyllotaxis.” In others, such as the beech and hazel, the passage from one
leaf to the next involves a screw-twist through one-third of a turn, and we
speak of “/; phyllotaxis.” Similarly, the oak and cherry exhibit %/ phyllo-
taxis; the poplar and pear, 3/s; the willow and almond, 8/;3; and so on. We
recognize the fractions as being quotients of alternate Fibonacci numbers.
But consecutive Fibonacci numbers could be used just as well; e. g., a clock-
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wise rotation through °/s of a turn is equivalent to a counterclockwise rota-
tion through 3/s.

Another manifestation of phyllotaxis is the arrangement of the florets of a
sunflower, or of the scales of a pine cone, in spiral or helical whorls. We ob-
serve that the numbers of right-handed and left-handed whorls are two con-
secutive Fibonacci numbers, viz., 2 and 3 (or vice versa) for the balsam cone,
3 and 5 for the hemlock cone, 5 and 8 for the pine cone, 8 and 13 for the pine-
apple (the clearest instance of all) and higher numbers for sunflowers of various
degrees of cultivation. Church [4] gives photographs of a (34, 55) sunflower
and of a giant (55, 89) sunflower. The Russians are said to have succeeded in
cultivating a super-giant (89, 144).

The fact that the numbers of whorls can be increased by intensive cultiva-
tion suggests an evolutionary explanation for the phenomenon. We can
imagine that a simple (1, 1) plant evolved into a (1, 2) plant, then into a
(2, 3) plant, and so on. The transition can be explained by observing that
the florets are not really quadrangular but hexagonal, so that each belongs
not only to two kinds of whorl but to a third as well. A slight distortion suf-
fices to make the third kind supersede one of the others. In Fig. 7, a pine-
apple has been sketched between two hypothetical variants; a simpler fruit,
exhibiting (5, 8) phyllotaxis, out of which the pineapple could have evolved,
and a super-pineapple, exhibiting unquestionable (8, 13) phyllotaxis, which
might be produced by intensive cultivation. The scales of the pineapple have
been numbered systematically, with the multiples of 5 and 8 in the directions
in which 5 or 8 whorls occur. The remaining numbers then follow by ‘‘vector
addition,” e. g., we have the multiples of 5 4+ 8 = 13 in the intermediate
direction, in which there are 13 whorls. Thus the numbers in any whorl form
an arithmetical progression. The same kind of numbering could be applied
to the florets of a sunflower.

Such an explanatiori for phyllotaxis was first given by Tait [18]. According
to Dr. A. M. Turing (who is preparing a new monograph on this subject), the
continuous advance from one pair of parastichy numbers to another, such as
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(5, 8) to (8, 13), takes place during the growth of a single plant, and may or
may not be combined with an evolutionary development.

3. Another application of the golden section is to the theory of Wythoff’s
game [20]. Like the well-known Nim [2], this is a game for two players, play-
ing alternately. Two heaps of counters are placed on a table, the number in
each heap being arbitrary. A player either removes from one of the heaps an
arbitrary number of counters or removes from both heaps an equal number
(e. g., heaps of 1 and 2 can be reduced to 0 and 2, or 1 and 1, or 1 and 0, or
0 and 1). A player wins by taking the last counter or counters.

An experienced player, playing against a novice, can nearly always win by
remembering which pairs of numbers are ‘‘safe conbinations’: safe for him
to leave on the table with the knowledge that, if he does not make any mistake
later on, he is sure to win. (If both players know the safe combinations, the
outcome depends on whether the initial heaps form a safe or unsife combina-
tion.)

The safe combinations A201, A1950

a,2), 3,5), 47, (6, 10), (8 13), (9, 15), (11, 18), ...

can be written down successively by the following rule. At each stage, the
smaller number is the smallest natural number not already used, and the
larger is chosen so that the difference of the numbers in the nth pair is n.
Thus every natural number appears exactly once as a member of a pair, and
exactly once as a difference. It follows that, if player A leaves a safe com-
bination, B cannot help changing it into an unsafe combination (unsafe for
B). It is slightly harder to see that any such unsafe combination left by B
can be rendered safe by A. Suppose B leaves the pair (p, ¢) (p < ¢) which s
not one of the safe combinations. If p = ¢, A wins immediately. If not, let
(p, p’) or (p’, p) be the safe combination to which p belongs. If p’ < g, A re-
duces the g heap to p’. If ¢ < p' (sothatp<g<p’andqg— p<p’ — p), he
reduces both heaps by equal amounts, so as to leave the safe combination whose
difference is ¢ — p.

Thus A can win, no matter what B does, unless A is confronted with a
safe combination before his first move (in which case he will remove one
counter and trust B to make a mistake).

It is easier to write down a lot of safe combinations than to discover a gen-
eral formula. Such a formula was given by Wythoff ‘‘out of a hat”; but a
more natural approach is provided by the following theorem of Beatty [3]:

If x~! 4+ y~1 = 1, where x and y are positive irrational numbers, then the
sequences

[x], [2x], (3«], ..., Dyl [2y] [By), ...

together include every positive integer just once.
(Here [x] means the integral part of x.)

The following proof was devised jointly by J. Hyslop in Glasgow and A.
Ostrowski in Gottingen. ‘
For a given positive integer N, the numbers of members less than N of the
sequences r

%,2%,3%, ... and Y 2y, 3y, ...
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i, are, respectively, [N/x] and [N/y]. Since x~! 4 y~! = 1, where x and y are
irrational, N/x and N/y are two irrational numbers whose sum is the integer
.~ N. Hence their fractional parts must add up to exactly 1, and

[N/x] + [N/y] = N — 1.

. This is the number of members less than N of the two sequences together.
. By taking N = 1, 2, 3, ... in turn, we deduce that the multiples of x and y
~ are “‘evenly”’ distributed among the natural numbers: one between 1 and 2,
. one between 2 and 3, and so on. Hence their integral parts, [z#x] and [ny],
~ are the natural numbers themselves.

. This is one of the two requirements for the safe combinations in Wythoff’s
- game. The other, that the difference shall be #, is secured by taking

y=x+ 1.
. Since x~! 4 y~! = 1, it follows that

x2—x—1=0,

. whence x = 7,y = 72 and the nth safe combination is

7],  [nr?].
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