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Introduction.—Generalizing the classical prblime des rencontres and frro-
bleme des ménages, TOUCHARD asked for the number of permutations discordant
with the k permutations 123...n, 234...1, ..., k k+1..-k—1. The case k=3
was recently treated by RIORDAN |7 who obtained a recursive formula of
the enumeration polynomial, but it seemed far from being direct, containing
an auxiliary parameter not easily calculated.

The present paper deals chiefly with the case k=3, giving, above all, a
recursive formula and asymptotic expansion, both in just the manner in
which a future generalization is believed to take place.

1.—Latin extension and Latin econtraction.— Let L be a ku Latin rect-
angle in the integers 1,2,-..,n. Suppose that we can add a new row 1o L,

obtaining a (k4 1)<n Latin rectangle 1. Then we call L' a Latin extension of
L. and L a Latin contraction of 1!, The number of Latin extensions of 7 will
be denoted by N(L), and that of Latin contractions of 1. by N*(L). These
may be alternately defined as the numbers of permutations in the integers |,
2,---,n, which are discordant with, or imbedded into /. They depend in fact

only on the equivalence class of Latin (or rather Hall) rectangles (CF [ 11]),

and if L* denotes a complementary Latin (or rather all) rectangle to L, then

N(L¥)= N*(L). We cite here the following theorem of ERDOS-KAPLANSKY

[1]in the form improved by the author [10].

THEOREM L. N(L)=n! >} (=) J(L; #)1%2% ... (k— 1), _/(n),,
where the summation is extended oter all non-unitary resivicted parlitions

{ t=2as+3az+ -+ + ka,

b 304

u = ay +ug oo + ax

and J\L; w), the wltimate building block, denotes the number of ways of choosing t ele-
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ments in different columns of L, in such a way that these t elemenls use up just u integers,
and moreover, some az of these integers appear each fwice, some ay of them appear each
thrice, ---, and some ai of them appear each k times. o, is the iruncated sum

St ()" /m) for e™* and (m) is the Jordan factorial.
)

2.~ Structure polynomial.—We define the structure polynomial F(IL; X)
of Latin rectangle [ by
F(L: X)) = S T(Ly m)xieads - il
and the redueed structure polynomial f(1.; 2) by
flL;x) = aF(L; et =9, — (k=D

Then Theorem | may be stated compactly as

THEOREM 1. N(L) = fIL; E— k)0t = f(L; E) S

where E is a wsual shift operator and S, = nle,. .
The use of these polynomials enables one to express some other functions

of L in manageable fashion, for instance the number q. of permutations

having just m clashes with L is given by (Cf L [2h qu=

(=)o (n—i)u/"(L; —k), and in particular,

THEOREM 2. N¥(L) =(=) f(L; —k).

"This result may be regarded as a duality theorem and becomes impor-

tant in the sequel.

3. A combinatorial lemma.— The following lemma is rather trivial,
but it contains a typical argument that will be used repeatedly in our treat-

ment.

LEMMA 1. The number of ways of choosing a (>0) poinis from among the n

given points on a circle, such that any two points selected are separated by at least s other
... nfa—sa—1

points 15 ( a—1

PROOF. (Cf.[4],[91) Any choice containing a fixed point is charac-
terized by the sequence of numbers v, vy, ++-, Uy, denoting the lengths of
intervals formed by adjacent points selected. These numbers satisfy 2 0,=n
and 1,25 The number of solutions of this equation is, as is well known,

i S Logies Lt o
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(":8,_”]' ])- Since any of the ¢ points may be fixed at the beginning. the

Lemmnua lollows immediately.

4.—Enumeration  polynomial.—Let {L}={L', L™' ... " ..} bea
sequence of Latin rectangles, 1" being o k<n Latin rectangle. Then we put
QB = film s E—k), Gla, E)=>1Q, (K x» and call Q,(E) an enumeration poly-
nomial, and Gla, £ its generaling function. 1{ the sequence consists of Latin rect-
angles corresponding to the problem of TOUCHARD, we denote the generating
function by G,{x, £).

Before going further, we illustrate our notations by simple examples.
The probleme des rencontres is the case k=1 of TOUCHARD's problem. Here
JIL; 7)=0 unless t=u=0, and FL";x0=1, f(L*; E—1)=Q{E)=(E-1)"
=1", where d=FE—1 and N,=N(I"=1"0!, G (x, £)=dx/(1 — dx).

The probleme des ménages corresponds to k=2. Here the significant parti-
tions are necessarily of the form 2% and J(L"; 2%) is precisely given by
Lemma | with s=1. Hence we have, by putting J=E-—-2,

— An Y3, a0 fe—a= 1N s
QB =+ 33 (= " (" )J i

Golw B = F23/(1 = d0)+ 33 ()" | R 5 e 1)_;-—z=x,)

u B\ e\ a—1

i

£ (1= 4~ (log (1 + 22/(1 — 4x)))

2—dx

= — &= | —dx 42

since ):: (n—a-n ])x" = (x2/(l —ap™

ae2a\ @—1

5.—The operator H.—Let K be a field and x be an indeterminate. In
the field of rational functions, K(x), we define the operator H by

H(f) =m— %) L), m=deg. f) (f(0)F0).

Thisis=m— ?i log f(x), if K is the field of complex numbers, or function field

over the field of complex numbers. By this operator # the multiplicative group
K(x)* of non-zero elements of K(x) is mapped fomomorphically into the addi-
tive group of the same field:

e ——
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H(f(x)g(x) = H(f(x))+ H(g(x)) (f(x), g(x)€ K(x)").

We call functions in the image H(K(x)*) H-functions, and we call flx)
the defining (rational} function of H(f(x)). Moreover we define h=functions
as sum of fl-funciions and a polynomial. Tt is easily seen that the defining
function of an fl-function is uniquely determined except for a constant
factor, and that for any A-function there is only one H-function such that the
difference is a polynomial, which we shall call its H-form.

It is 1 be noted that the operator ff way used essentially for the caleu-
lation of Golx, ), which in its turn establishes 2 connection between the typi-
cal argument of Lemma | and the operator /.

0.—The 3-ply staircase. ~The following Lemma makes the most eon-
ceptual part of our treatment of TOUCHARD's problem.

LEMMA 2. Consider the staircase (Cf. |7 1)

and denate by by, the mumber of ways of choosing v columns and 2r integers such that each
column containg just lweo integers, from the above staircase. Then

bar = ba-iyrt+ 2byn o+ bo-g,ro1 + byt ez, (nz=1),
h\l.t! - 1

The correspording number for the Latin reclangle L* of the Touchard's prablem is
given by

b = bur 4 20,01+ 2bpog,oy + 3by—tur-a-

PROOF. It is convenient to consider another staircase together, which re-
sults from the above by shifting the three 1’s to the left by a unit length.  The
number bearing the same meaning for this new staircase as of b,,, will be
denoted by ¢, . Then we have b, ,=b,_,,+ 2ba-2yr-1+Cq_2,-1, correspond-
ing to the three kinds of choices: not containing the integer |, containing
both | and 2, and containing 1 but not 2. Similarly ¢,,=b._;., +Bynra1s
Elimination of ¢ results in the first formula of the Lemma. In the same man-
ner we find b, = b+ 22,01+ 20 2,1+ byosro.  In fact, the number
of choices which do not contain the (n—1)" nor the »™ column (“seaming”
columns) is b,,,, whereas the number of choices containing only one or both
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of these two columns is Bu-s.ret + Conpoy OF Byey,pon respectively.,

THEOREM 3. The function G. slx, B is an h-function of x, and has the | I-form
H(P{x)) with

PO=00+0)( =+ D+ (34 Dat — 1), = =3

PROOF.  The two-way generating function B(x, ¥r=23h, 2" s equal
to I'T(x, ). with the polynemial T'(x, M=1—x—22y— iy e by
Lemma 2. Similarly B¥r y) =X p*, o ¥y =TT Lrioneey =
(P20 4 2060y + B3,/ () = H(T) v, where op denotes 21-]J1l|‘\ nomial
of degree 2. This is the leading term of the “structure polynomial generating
function™ MF(L"; y, 2)an of the sequence of Latin rectangles of TOUCHARD s
problem  (for k= 3), which we find to be an #-function. Now consider the re-
maining terms of the structure polynomial generating function resulting from
JUZ 273 with 5 0. This is ealeuluted by the typical argument of the
Lemma 1. We abserve that ::_‘,J’(L“; 273"y is n/s times the coellicient of
2 in (R, ¥ or m/s times the coeflicient of + in (*B(x, v)). ‘Ihis
means that the part of the structure polynomial generating function resulting
from J(L"; 23") with § >0 s given by

d )
- ;;x log (1 — 2B, ¥)) = H(l — 233 B(x, ¥ —4

and hence the structure polynomial generating function is
H(T (e, y) + o+ H(l — 2B (x, y) — 4 = H(T(x, y) — zx9) 4 0s,
By the substitution x> dx, y> —4F =247 we obtain the Theorem.

7.—The Assumption 4.—We have scen in §4 and §6 that Gy(x. ) are
h-functions for k up to 8. It is natural to replace Gi(x, E) by theiv H-forns.
We do this without changing the notation. Thus we have

Gy (x, E) = H(P(x, E)),

with
P(I,E)=1—Jx=l—-(E—l).\: for k=1,
P(X,E')=l—~dx+a.4'=[—-(E—2)x+x3 for k=29,
Pl E)=1—dx+ 20+ (U4 2)0— for k=

=(l+=2)(1 -—(l+J):a:+(3+JJ.r:'-'—-.t’)
=1=(E—3)x+ 222+ (E— )% — x

N
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= (] 42 ] — (F— 2)x 4 £x? — 23),

Itis conjectured that Gylx, E) s an A-function for an arbirrary & Bul
the author cannot prove this.

Nowo denote by A the following assumption for the rational {unctions
Gl B ool o variables x, A

Al G, By = 1Py B, considered as a function of x, where Pla, E) is o
Pl snamial i, B

A20 P B s tinear dn L and has the form

Piy, Ky =14+ (~E+u)x + .

A2 s aleernarely expressed as

. 1 o .
» NI I -
PO B)= . 'ci!;'l("' L) 1.
4=
For the Tuncion Clrx, E) satisfying the Assumption A, we define . £)
by Gle, £ = 20 () Tuis readily seen that Q,(£) is a polynomial in £
of degree n.

Moreover we need a derivative of Q,(E). We introduee R, (1) by
Rooy (0 = L 00 (E)
Bk SUL e /6 L

R,(E) is a polynomial of degree at most #, and has the generating

1 IP (g )
Pl k) Ok
Kix, £) we have

funetion -- Indeed putting this generating function =

vi) (e K 3 v B ; fe] o
"'JEE";R) = MR, (E)xn =) Q;EQ"(E’J‘U" = Z‘)E(m - log 1)
AP _ _x0 1 aP
=~ Holonror?)= =59 1 5y
(m is the degree of Plx, £) in x), and hence xK = — }, ,:Z since both mem-

bers are of the form x + -++ as seen from the Assumption A.

8.—Difference equation for the Q,(E) anb R, (E).—Now we main-

tain

THROREM 4. Under the Assumption A, the Q,(E) and R,(E) are combined by
a homogeneous linear difference eguation of the form

Strecture Polynomial of Latin Rectangles and its Application
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2laQu-(E) = Db R (F), a = by = 1,
with integral coefficients a,, &;.

PROOF.  Write P(x, E) as

P(x, E) = Ux) — ExV(),

where U(x) and V(x) are polynomials of x. Note that I7(0)= () — 1,
which is a consequence of the Assumption 4. The generating functions of
Q. (E) and R.(E) are G(x, E) = M, BY P(x, E) and K(x, F) = V(x), Plx, B)
respectively, where
M(x,E) = mP(x, F) — fj: Pl E)
= (mU(x) —xU'(2) — Ex((m — D (x) — 1),

which means that we have only 1o find polynomials A(x) and Blx) of x such
that

AWMz, E) — Bx)V(x) =0 (mod. P(x, £)),
which is equivalent to find three polynomials 4(x), B(x), C(x) such that
AM(x, E) — BV (x) = C(x)P(x, E).
Such polynomials are given by comparing coeflicients of £, For instance
A(x) = (V(2))%, Blx) = UV (x) — (U )V (x) — U F (o)
Clx) = ((m—1) F(x) — V' (x))W (x).

It follows from U(0) =V (0)=1 that A(0) = RB(0)= 1.
If U(x) and ¥ (x) has a common divisor, then 4(x) and Bix) may be
divided by this divisor.

9._Examples.——6‘(x, E)= G (x, E). We see from §7, that U= | — X,
V=1, A=R=1. The difference equation is
(n ¢ = R

Consider the G(x,E) = Ga(x, E). Here U= 1 — 2xt V=1; A=,
B=1-2 The difference equation is

(2) Qn = Rn - Rn—:-

Next consider the case G(x, E)=G:(x, E). In this case

A
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U= T4 Qa4 202 —x0 — ot J= ] —x A= =2y B=] — 522 — x4 x5 — 8,
But £ and V¥ are both divisible by I +x  Hence in the form divided by
I+ax wehave A=1—x—x"+ 48 B=| —x—4x*+x'— % The difference
eqEtion is
(3 O =W — Qe + Oy = R, — Rooy — 4R 2+ R, — Re_s.

In this case Ple B s decomposed inw | 4+ x and Plx, E)=

= (E=2x 4 Ex — ¥ For (x, E) = H(P(x. E)) we have [ =1+ Qe — x4,

Velom d=1=2x4 0% B=1=0x— 949 at The difference
cquntion is
(1) Q= 200+ Qpa = Ry — 2Ry — 9, + 2R, — R

10, =The meaning of derivative.— There is 1 curions circumstance
concerning the numbers of the form g0 where gl is a polynomial,

LENMAMA 3. Pur ary polyromial g(x) we hate

g0 — 2(0) = g

accenl indicating di fferentiation with respect fo 1L,

PrROOE. T is sutlicient o prove for gld=x" Il no- 1, then £707 =
nl=nlnp— Dl=pE"pr = (EY0L and if =10, g0 — I, (EoY 6! = 0.

THEOREM 5. ff the Assumption A is true for Gx, £), then the numbers N, —
Q. UED0! satisly a recursice formula of the form
No = ()¢, = alN, i,
E ; l'.vn—i = }_:bi n_,:‘-“ = by, = I,

where o, and {, are the same as in Theorem 4, and c, are integers defined by c.= Q,(0),
or by

Cn =" 4 3% e oy
where 0, (2, -, are the m roois of T(x)=(— x)"P(—x1,0)=0.

REMARK. It follows from the Theorem that N, are integers.

11.—Recursive formula.—We have essentially proved

THEOREM 6. Denote by N, the number of permutations discordant o the k>n
Latin rectangle 17, corresponding to the Touchard's problem. Denote again by N7F the
munber of permutations which can be formed within the Latin rectangle L.  Then if

Structure Polynomial of Latin Rectangles and its Application 9

k=13,

A
is always divisible by n, and the quotient, Ny, satisfies Jointly with N, a hamogencous
{inear recursive formula with constant ( integral ) corfficients.

PROOF. “We need only remind Theorem 2, which gives a combinatorial
meaning to ,(0). i
Move precisely: If k=1, P(x)=x— 1, q=|, N¥=1. Thus
No—=(=r!=an;

n=1s
5)
{ N, =N,

Ifhk=2 T =(x—13 N=1+]=09 Thus

N, = (=)2 =nN,_,
(6)
N,=N, — N,_,.

k=3 T =(-1PGE"—x- D), No=1+ 141, where

L= (Y (Y

is the so-called series of Lucas (CF, [3, p. 1477]), alternately defined by /, = [,
L=3 L =l_,+1_ ®=3). Hence
No = (=) (24 L) =aN,_,,

7
& MNy— Ny = Nyoo + Nos = N, — (o=t — 4NV _o + Noor—=Noes,

A slightly less complicated formula is obtained if we make use of Q,(F),

No=N,— (-7,
(8) By = (=rQ+1)=n¥_,
N, = 2N, + Noop = e~ 2N, — 21\-—-’-—2 + 2N, =N

or equivalently

No=(=r@+L)=nrN,,
(9)
No=2Ny o+ Ny = Ne—2NL = 2N, 4+ 2N, = Ni - (— )4

The formula (6) is recursive formula of Cayley (CF [7]), and (7) and (9)
are the natural generalizations.

AN




g b e p——— S+ o PSR T T

e b e

10 Koichi YAMAMOTO
12.—Asymptotic ex pansion.—We now proceed to obtain an asymptotic
expansion.

THEOREM 7. Suppose the Assumption A is true for Gy (x, E). Assume moreorer
that the rational function

% Ulx) = ¥l2)

V() — k= Z(x)

has a zero-point at x = 0.  Then we have the asymptotic expansion
¢
o~ kgl f
Ny ~e n.}_J(n_ D,

wilh constants ¢, defirned by

exp. (— Z(x)) = Dlcx

PrROOF. We start from the second formula of Theorem 1:
No=fUUNE)S = Q. (E+KS,
Here we intend to replace S, by e*nl, i.e., to replace £*S, by e"*E"0!. Now
30, (E+kyxr = H(P(x, E+ k)
; ad ExV(x) i
:(consl. + H(U(x) — kxV (1))) 5 (lag(i ~ Gy = ka(x))),

where, the first term is a rational function of x, and hence its contribution
to No(eD7'is of order (n);' for an arbitrary r.  Neglecting this term we
find

SO E+ B~ = ,‘;‘f (log (l - U(;f"_yafjﬂf(x;))

:’“i(l" L g ,(U(x) ka(E,})")

dx\ia1 s Vi{x)
= {;d\,E’x (1 +xZ(x))™"
= 2P () v ey
= xd ~Exf“”_' Ttg— 1!
a d.’(u.ql.lr s (=) (s— 1)q! Qar

for the ag., defined as

e
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(Z() =Dla,,x.

Comparing coefficients of x7, we have

QE+RS~n 3 (-pEbre=Dl, o

eiwten s —Dig!

~etp > (—yrmr=D1,
Ver r!

r
= g~k pl N £
o o
with !
= E ('— )q aq,”v
q ri
i.e., with ¢, defined by
>lex’ = exp. (— Z(x).

13.—Examples.—We note the conditions are satisfied for k=3. The

function Z(x) is, in fact, =0 for k=1, Z(x)=x for k=2, and Z(a)=

2(3=x)/(1—x) for k=3, as seen from U(x), ¥ (x) given in §9. The asym-
ptotic expansion is: ‘

e ————

N, ~etnle] for k=1,
No~e 2> (— )r‘(n——l) for k=2,
N~93”T>_4 n—l) for k=3,

where 1%79“’ SE?Q!
Co - 1,

Ca— (20 =5)Cacs+ (n—1) (n—4)Coz+ (n— 1) (R — 2)C,s = 0.

The beginning few coefficients are: Cy=1, €,=—3, C.=5, Co=—3, C,=9,
Gs= =3, C=—51, C:=—675, Cy=—5871, -...

26 33

14.—Explicit formula.—Denoting the m roots of the polynomial Y(x)=
2 P(x~1, E) by a(E), B(E), ., v(E) we have

HP@E) =0 —aE =" + (1 = BB + (1 —2(E) o)
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O the other hand we know that Gi{x, £) are of the form for k3. This [6] L Kartassky and J. Riorvan:  The problime des ménages, Scripta A
: ; _ N : 5 h 2 G
means that the enumeration polynomial @,(E) is given by 113124, : ripta Math,, 12 (1946),
(71 ). Riorpax:  Discordant permatations, Scri
- . . d ! _ » Scripta Madh,, 20 (1954), 1423,
O (E) = ( (B + (BLE)* + -+ + (7 (E))", [8] ). TovcHarD: Sur un probléme des permutations, C. R. Acad. Sci. Paris, 188 (10-
631-633, . Paris, 188 (1934),
ar that {91 : Permutatic ; ik b i : ;
109-119, ermutations. discordant with tio given permutations, Scripia Math., 19 (1953),

No= (@B + @) + o + ()0

which may be regarded as an explicit formula.

For k=1, we have YY) =x—4, a(E)=d4=FE~1, N,=(E-1)"0!

For b=9, we have Y(vi=a—dre+ 1, Q(E)=(a(E))" 4+ alE)) "=
Zeos mfr, where WlB) Gl BT =A=FE—2=cos . Hence Q(E)=2T(4/2,
with a Tehebychet polynomial. For g = /2, we have Q,(E) = 2 cos Zngp,
with £—2=2cos 2p=+4 cos*p— 2, or with gu=cos™ !t} p2), hence O FE) =
0T, (v E/2), a result of TOUCHARD (9] But it is queer that the more
natural form Q.08 =27, (E'2—1) has been overlooked.

For the case k=3, we find Q,(E)=(—1)"+ ((£)" +(SEN"+ (v E)"
with the roots of a% — (F— 2)a2 +Lx—1=0.

15.—Conjecture for the general ense.—Trt is highly probable that the
structure polynomial generating function, and hence the enumeration poly-
nomial generating function is an A-function in general. The defining poly-
nomial of this generating function, however, does not seem to be linear in E,
hence does not scem to satisfy the Assumption A. But it is likely that it can be
decomposed into linear factors in E, satisfying the condition .4, which means
that N, has an explicit formula of the form given in §13, and that N,
satisfies a recursive formula of the type developed in §11.
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Appendix.

n N N, N
3 6 0 2
4 9 1 3
5 13 2 g
6 20 20 ) ‘)2
; f; 144 152
g . 1265 1350
i it 12072 12644
i -raij I 26365 1 31391
‘ 2 14 45100 14 89568
12 324 178 75140 183 29481
}f 523 2382 82730 2435‘1 63514
v ]g:é) 34075 18041 3689 (9462
5 ' 5 20345 48064 5 28480 96274
fi?) éﬁgg 84 55695 12593 85 70732 93427
" 5733 lfa? 02460 lf_SS&G 1474 42896 90360
5 o 25?39 72144 35860 26820 27906 90465
- 15 5 5 09585 30231 09484 5 14386 17025 23924
129 102 87723 40504 93609 103 74642 26990 53562




