login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000176 Generalized tangent numbers d_(n,2).
(Formerly M2001 N0791)
5
2, 11, 46, 128, 272, 522, 904, 1408, 2160, 3154, 4306, 5888, 7888, 10012, 12888, 16384, 19680, 24354, 29866, 34816, 41888, 49778, 56744, 66816, 78000, 87358, 100602, 115712, 128112, 145804, 165712, 180224, 203040, 228964, 246932, 276480 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Consider the Dirichlet series L_a(s) = sum_{k>=0)} (-a|2k+1) / (2k+1)^s, where (-a|2k+1) is the Jacobi symbol. Then the numbers d_(a,n) are defined by L_a(2n)= (Pi/(2a))^(2n)*sqrt(a)* d_(a,n)/ (2n-1)! for a>1 and n=1,2,3...

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Sean A. Irvine, Table of n, a(n) for n = 1..10000

D. Shanks, Generalized Euler and class numbers. Math. Comp. 21 1967 663-688.

D. Shanks, Corrigenda to: "Generalized Euler and class numbers", Math. Comp. 21 (1967), 689-694; 22 (1968), 699.

CROSSREFS

Cf. A000061 for d_(n,1), A000488 for d_(n,3), A000518 for d_(n,4).

Sequence in context: A120279 A037751 A037639 * A042927 A140305 A229019

Adjacent sequences:  A000173 A000174 A000175 * A000177 A000178 A000179

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 03 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 20 03:34 EDT 2017. Contains 290823 sequences.