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THE PROBLEME DES MENAGES
By IRVING KAPLANSKY anp JOHN RIORDAN

1. Introduction. The probléme des ménages asks for the number of
~~ ways of seating at a circular table #» married couples, husbands and
wives alternating, so that no husband is next his own wife.

We may begin by fixing the positions of husbands or wives, say
wives for courtesy’s sake. The number of ways of seating the wives is
2 n!, for they may occupy either the “odd” or “‘even’” seats and may
then be permuted in #! ways. Let the seats next the first wife be
numbered 1 and 2, those next the second wife 2 and 3, etc. Then the
probléeme des ménages may be restated thus: in how many ways can
the numbers 1, 2, ..., n be permuted so that 1 is not in positions 1 or 2,
2notin2o0r 3, ..., z notin z or 1. We shall denote the number of
such permutations by u,, the solution of the probléme des ménages then
being given by 2 #n! u,. Forn = 3, 4, 5 we have u, = 1, 2, 13, respec- A \‘:F?

tively, the permissible permutations being: ‘(0 = | ',( = -
p)
312 23451 34152 35421 45123 ( Kn ufﬂ))
24153 34512 43152 - a
2341 24513 34521 43512
3412 25413 35412 43521

Thus stated, the probléeme des ménages is seen to be a natural exten-
sion of the older probléme des rencontres, which asks for the number of
permutations of 1, 2, ..., » in which every integer is out of place. The
well-known answer to this latter problem is the so-called sub-factorial

of n:
1 1 I bl
h,,=n!li1—~+——~+...+(—)—] A{éé
l

which, in 1 the notation of finite differences, may be written compactly ' > I )9;
agi, — A0k

The statement and reduction of the probléme des ménages as above
are due to Lucas®; note that the dateis 1891. He gives the recurrence
formula

(n = 2y = (0 — 2nur + s + (=4, () A’\??
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attributing it to Laisant, and independently to Moreau. Evidently
these were~1;qmmunications directly to Lucas, for there appears to be
no record of publication by Laisant or Moreau themselves. Using
(2), Lucas tabulated the values of #, up ton = 20.

Apparently unknown to Lucas (and many others after him) was the
fact that (2) had been given thirteen years carlier by Cayley and Muir.
The problem, in its reduced version, had been suggested to Cayley by
Tait, who believed he required it in his study of knots. Subsequently*?
it appeared that what he needed was rather the number of ménages
permutations, where those which are cyclic permutations of one
another are not regarded as distinct. For example, for n = 4 we have
one solution instead of two, since 9341 and 3412 are identified; and for
n = b we get 11 instead of 13 on identifying 23451, 34512, and 45123.
This is evidently a somewhat harder problem, and no solution appears
to have been published.

Cayley’s first paper’ gavea direct application of the method of “‘inclu-
sion and exclusion” (cf. § 2); the resulting formula for %x, though ex-
plicit, is cumbersome. Shortly after, Muir’ obtained the recurrence

w, = (n — 2)tn—1 + (2n — H)Up—2 T (3n — 6)thp—3 T (4n — 10)%n—1
= (bn = 185 + o 2 uiciq gl 26) % n—1
+ (8n — 34)tns & 48
In an addendum? to Muir’s paper, Cayley used (3) to derive a formal

generating function. In the course of this work he obtained as a by~
product a recursion formula in terms of an auxiliary quantity ga’

q Uy = qn — In—2 (4)
593 § el = p TR (5)

He omitted the trivial step of eliminating ¢ from (4) and () which
would have yielded precisely (2). The first discovery of (2) must thus
be credited to neither Muir nor Laisant, but to Cayley.

In a second note four years later, Muir® gave an independent deduc-

tion of (2) from (3) without noting Cayley’s priority. As an inter-
mediate step he obtained the homogeneous recurrence

U, = Nlhp1 T 2Un—2 — (n — 4)Un—3 — Un—1 (6)

which can in turn be derived by iteration of (2).

Netto® recapitulated Cayley’s work! and quoted (2) and (6), ascrib-

ing them to Muir. Hemadeno mention of Lucas, Laisant, or ménages.
Taylor,!? giving no references, derived the recurrence

Mo = (B> + 7 4 1) (Upir + %) T (n + 1)tta N

. 0. 2. 1A 225»»
T G%’?ié‘% 5
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which is easy to deduce from (2). By elimination from a set of equa-
tions like (7) he found an expression for u, as a determinant, which has
probably only foermal interest. Alone of all authors in this respect, he

chose to seat the mien first.
MacMahon® gave an operational solution equivalent to the observa-

tion that u, is the coefficient of x1%; ... x, in
(y — 2% — %)(y — % — %) ... (¥ — %0 — x1)

M wherey = x; + % + ... + x.. He quoted (2) without proof, ascrib-
ing it to Laisant.

Schobe,!! quoting Lucas, gave a systematic derivation of the various

recurrences. He used an auxiliary quantity b, related to Cayley’s ¢ by

A?OL._ Bt = — (=)™ =

He found the interesting new expression L\V\ = ﬂ—g;SG?/

boes= 5 (= 4 p335672

where %, is given by (1), and proved that u,/n!— e ?asn— o. '

A new chapter in the subject opened with the publication in 1934 of a
brilliant communication from J. Touchard.!* In effect he revived
Cayley’s search for an explicit formula and stated without proof a
simple one which Cayley had missed:

W, — 1 _l<2n1— 1)(%—— 1!

2n — 1
+§ni’i—2(2”;2> e B o a8

Proofs of (8) and other related results were supplied later by Kaplan-
sky?® and Riordan.™

What we wish to do here is to derive these old, and some new, results

~ by a systematic procedure: the symbolic method.* We hope to show
‘ its power both in getting results and in uniting related problems.

2. The Symbolic Method. The basis of the method about to be
explained has been known for a long time and is a vital tool in many
investigations. It has been variously called the “method of inclusion
and exclusion,” “principle of cross-classification,” “‘sieve method,” etc.
Let there be N objects and a set of properties, say for definiteness three:
a, b, and ¢ (the extension to any number of properties will be evident).
Suppose N(a) objects have property a, N (b) have b, N(ab) have both a

o




116 THE PROBLEME DES MENAGES

and b, ete. Then the number of objects having none of the properties
is

N —=N(a) — N(b) — N(c) + N(ab) + N(bc) + N (ca) — N(abc).

For our purpose it is technically more convenient to use the equiva-
lent formulation in terms of probability; here the method goes by the
name of Poincaré’s formula. Let A, B, C be events, p(A) the proba-
bility of 4, p(AB) the joint probability of 4 and B, etc. Then the
probability that none of 4, B, C happen is
1 — p(4) — p(B) — p(C) + p(4AB) + p(BC) + p(CA) —

p(4BC). (9)

The form of (9) suggests immediately a product of factors:

s [1 — pD)IL — 2B — £(O)], (10)

and in fact if 4, B, C are independent, (10) is correct. However, even
if the events are dependent, (10) will remain valid provided we agree
that products like p(4)p(B) are to be construed symbolically as mean-
ing p(AB). . With this convention, the door is opened for the algebraic
manipulations to follow.

3. Meénages Polynomials. In the probléme des ménages (and in a
host of similar problems) the events under study are of the form ‘4 is
in the jth place.” Let p;, denote the probability of this event. Then
our task is to compute

1 — pu)(1 — p2)(1 — p)(1 — Pu) ... (U= D)1 ="Pa) (11)

Let us pause to observe how a product of p’s is to be computed. Itis
clear that p,; = (n — 1)!/n!, there being (n — 1)! favorable cases out
of the total of #!. For a product p;px (= joint probability that 7 is
jth and £ is /th) there are two possibilities. Firstly it may be zero if
the events are incompatible. For example paspas = 0 since 2 cannot be
both 3rd and 4th, and psups = O since 3 and 5 cannot both be 1st.
Otherwise pypu = (n — 2)!/nl. Similarly the product of k of the p’s
will be (n — k)!/n! unless they are incompatible; and the latter will
oceur whenever there is any duplication in the first subscripts or in the
second subscripts of the p’s.

Following the notation of finite differences we may write (n — k)!/n!
= E¥n — 0)!/n!or simply E¥. Then the preceding paragraph can be
summarized as follows: to evaluate

1 —= A — P2 --.

first eliminate all products that vanish, and then replace each surviving
p by E.
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The simplest example of this procedure is the probléme des rencontres
which calls for the evaluation of

(1 = pu)A — D) e (1 = Daw).

Here no products vanish so the answer is (1 — E)», in agreement
with (1). For a less trivial example consider the following set of re-
strictions:

1 not 1st or 2nd
2 not 2nd
3 not 3rd or 4th
4 not 4th

and so on in groups of two (it being supposed that # is even). We
compute as follows

(1 oy Pn)(l o Pm)(l o P22) = u]i— Pn - Pn = P22 -k P11P22
(1 — psa)(1 — p30)(1 — pas) = 1 — psz — Pss — Puu + Paspus, ete.

Since we have now eliminated all vanishing products the answer
(1 — 3E + E»"?is apparent. Further examples can be found in
reference 4. ;

In evaluating (11) we unfortunately do not find any such happy
resolution into factors as in the above examples. However, an ap-
proach which suggests itself is to compute the result, say L, of detach-
ing the first & factors of (11).

Loal i etion Coej?a‘.af}m

Lz = (1 - pn)(l Cxa Plz) e 1 i o 2E

Ly = (1 — pu)(1 — p12)(1 — p) = 1 — 3E + E? AO“ q?’a

Lol ~ AR 4 BE? l

Ly =1 — 5E + 6E? — E? C;r o |

Ly =1 — 6E + 10E? — 4E*. y Pl
15139 3

One may without difficulty guess
L =1 -kE+<k; 1>E2— (k g 2>E3 SRS R

We can get an inductive proof of (12) by deriving a suitable recursion
formula. For example

L; = Li(l — pu) = Lg — Lepu.

Now the effect of pyon Ly = (1 — pu) ... (1 — pss) is to knock out ps,
and leave L; with which it no longer conflicts. Hence
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N L, = dig: = EL;,
and in general

o Ly= Lisr — ELy—»

from which (12) follows readily. It may be remarked that the pre-
ceding algebraic argument parallels the combinatorial version in
reference 3.

When we reach Ly, 1 we have imposed all restrictions except one:
that # not be 1st. The analogous problem might be called “non-
circular ménages” and in fact it corresponds precisely to a straight in-
stead of circular table. If M, is the polynomial for (11), then

Mﬂ. L2n—1(1 55 Pnl)
L2n—1 o L2n—3(1 = Pn)(l == pnn)pnl
L2n—l oot ELZn—Sy

[E |

and, using (12), we can write M, as

i 2n o2n — 1 2n 2n — 2 §
T 2n—1< 1 >E+2n—2< 2 )E B

On replacing E* by (n — k)!/n! we get precisely (8).
It is perhaps somewhat more elegant to have E operate directly on 0.
This is accomplished by passing to the polynomial

U.E) = E*M,(1/E), ie.,

MmN T 2n (2n - 2> Fi
Hir & 2n—1< 1 >E i T
(14)

Following Touchard!* we may also write U, compactly as a Tcheby-
cheff polynomial:

U, = 2 cos [2n cos™! (VE/2) I (15) AN
We list the first few of these polynomials: :

U2=E2'—'4E+2

U, = E* — 6E* + 9E — 2 PTSL"SFQ’
U, = E* —8E* 4 20E* — 16E + 2

U, = E* — 10E* + 35E* — 50E? + 25E — 2 .

U, = ES — 12E° + 54E* — 112E% + 105E* — 36E + 2.

[ @
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‘Ehiis forkinw = 5,

U; 0!
51 — 10(4HD~+ 35(3!) — 50(2!) + 25(11) — 2(0Y)
13.

4. Polynomial Relations. The polynomials M, (E) are useful in
more problems than the simple ménages problem whose solution has
just been given. We derive here some of Touchard’s results having
this wider extent.

Writing

Us

M (E) = >:0 an i (—E)},

asin (13), we may readily show that
Gy i = Guuets § W DB iy Opn bl (16)
Indeed this follows at once from
MAE) = (1 — 2E)M,—(E) — E*M,—+(E), (17)
which is a consequence of the two relations of § 3:

Llc e Lk—l s ELIC—Z‘)
Mn = L2n—1 = ELGés-
Also: :
U= (E — 2)Up-1 — Up-s. (18)
It may be observed that (18) is a recurrence relation for Tchebycheff
polynomials, in agreement with (15).
Writing f,(E) = (E — 2)*, it follows from (18) and mathematical
induction that

v, = 52" 721 e (19)

i=0 Z

Asj, 0! approaches n! e~? (19) corresponds to the asymptotic formula

GfparEl 1 (=1t J
u,,~n!e2[1 = s AR e A

The notation (# — 1),is the C. Jordan factorial notation:
m=-1)i=nr—-1)n—-2)...(n —1 —13+4+1).
Again, by (18)
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(B = )Up1 = Up+ Upi+ Ups 3
(E _ 1)2Un__2 o (E B 1)Un_1 + (E i 1)U_2 "'I' (E o 1)Un_.3
- - Un + 2Un—-1 + 3U7L—'2 —I_ 2Un—3 + U—4
o = Un—4(1 + U + U2>2,
where the multiplication in the last is symbolic; by induction
BT b S B i G W i T o 2 (21)

The polynomial ¢(n, m) = (E — 1)"U,_, enumerates permutations _
discordant with the identity permutation and a permutation of cycle )
structure 1" (n — m); e. g., (5, 2) enumerates permutations discordant
(having no elements alike in any position) with the two permutations

12345
12453

Finally, by (15):

U.U; = 4 cos (219) cos (276), cos 6 = %\/E

2[cos 2 (7 + 7)0 + cos 2 (2 — 7)0]
Uis + Usy

if the convention U_ , = U, is made, and by iteration of this the general
result due to Touchard is reached:

UilUig--- UiszzUild:iz-" = i3y (22)
with the sum on the right over the 2°~! possible assignments of + and
—signs,and U, =U_,, Up =2, U, = E — 2.

Formula (22) may be used in the enumeration of 3-line Latin rec-

tangles (Riordan!) and results in the following formula, published in
The Amer. Math. Monthly, v. 53, 1946, p. 18:

i

m

K, = z(”) it gy M = [1 n] (23)
i=o\? 2

In this formula ;K, is the number of reduced 3-line Latin rectangles,
that is, with the first row in natural order, %, is the sub-factorial of »
(given by (1)) and to avoid an exceptional case, %, is taken as unity.

5. Recurrence Relations. As is well known, the polynomials
U, define not only the ménages numbers %, but also more general
numbers say «,, , of permutations such that 7 elements are in forbidden
positions; thus

Unp, r = Mn(E)‘pr, 0y (24)
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with ¢, = B0 = (=) (’f) (n — B,

or o
Galt) = St = Tan (= DIt — 1) (25)

_ 2n2f i<2”1._ 1) Gt

To derive recurrences, it is convenient to consider two related gener-
ating functions, as follows:
2n — ¢

Bl =Yy, e z_( p ) ¢ty 1 SR R

2n — 1 + 1 g
Lo =Sw,. =27 T w-nw -0 e
Note that H,(f) corresponds to Ls,—: in the same way that G, corre-
sponds to M,; hence v, , enumerates permutations for “non-circular
ménages’’ (cf. § 3).

Then it follows from the relation (implicit in: M, = L1 —
ELG—s)i
2n 2n — 1 2n — 1 o2n —1 — 1
(=) (L ) e
that
Gn = Hn + (t o2 1)Hn—1y
=nl,_1+ 20t — 1)*, (29)

Tgivecftded PLE

Also the ordinary binomial recurrence shows that:
H o Lo 0y (30)
Combination of these leads to:
(n = DGupr = (1° — Ga+ (n 4 1)(t = 1)Gas — 4( = 1) +1(31)

nHopr = M2 45— 1+ DH,+ (n+ 1) — 1)?2H,—, —2(t — 1)*H
Toi = o+ D=1 F20= I

These in turn, of course, correspond to recurrences for #,, , v, , and
w,, , of which we quote only those for = 0 (abbreviating u, o to u,,
ete.).
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n — Dty = 02 — Dy + (4 Dupy + 4(—)" (32)
Nppr = M2+ 1 — Do, + 0 + Doy + 2(—)*
»,‘,’\\ Watl — (n + 1)71),, + 1 2(—)"

The first of these is equation (2) of § 1.
Simpler formulas follow from differentiation of generating functions;
thus, indicating derivatives by primes:

G,=20H, 1=nl'p1+2n(t—1)""1=2nG,—1 —
@t —1) gt

Hln = (211 = 1)H,,,_1 = (t - I)H,n_l
PR Rl

&' psi:2438)

Corresponding to the last three are the recurrences:

(n— Dty = 00lp1 .+ 0@n —r — Dthey;
TUn, r = TUn—1, ¢ - (27’l o 7’)71,,_1’ i
YWy, 1 = TWy—1, r - (271 —7r 4+ 1)‘12),,_1, s

Table 1 shows the numbers %, , for n < 10.

6. Asymptotic Formulas. To develop an asymptotic formula for
U, , the following relations which we take without proof, are required

UL s —)i
= 3 5 G M @
My = Ay, 1/(2); (35)

where M, is the 7th factorial moment of the distribution #, , and a,, «
is the coefficient of (—E)! in polynomial M,(E); note that a, , has
recurrence (16).

Equation (34) is easily evaluated if a, , is expanded in the form:

G = T b, <’z :j) (36)
By (16) this is possible if

Ugrc S0gate 45— Qo3 11 37)
with boundary condition b, o = 2% and ay1 = 2. Then

by1 = (2 — 1)2¢2 ! (38)

bys = (82 — 5 — 2)2°8

N
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By (35);
My _ gl 2 —5—21@6—-1)
s, : 4 "y % 32 nn — 1) Sl
so that
Unr 3.2 (—2)1[ e A8 ki :\
n! —712,-: 7! . 4n 33 32(n)s g ¢
(40)
since
i(G — 1)@ — 51 — 2) = () — 8(2)a.
Using the Vandermonde relation
¢+, = % (§) st
equation (40) is readily evaluated with the result
v e[ (e =D —4) Mﬂ] of
e et [1 an AT A e

where

M0=3@>—6@>+4@>_2

For the range 7 = 0 to 10 the values of (r — 1)(r — 4) and fi(r) are as
follows

r 2 RLL0EpE iagnd 6 7 8 4. 10
{9=1)

(oD i PogpriaS o Genofioncaeds MR8 o840 54
R b B s

Note that (41) is consistent with (20), though less extensive for this
instance.
The close approximation of (41) to the true distribution for suffi-

ciently large values of # is shown by the following comparison forn =
10

r 0 1l 2 3 4 5 6
Exact 0.12119 0.26896 0.28551 0.19173 0.09064 0.03171 0.00835
Approx. 0.12105 0.26917 0.28571 0.19174 0.09047 0.03178 0.00845

A3356 Y
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The corresponding expression for non-circular ménages numbers
Uy ;7 1S

Vo i [1 g3

n! 7!

2(7) ts
L 4(n)2]+0(”) (42)

with

g(r) = 3<£> < 3(;) + 2r — 2.

n/x 5 6 f 8 910

2 0 0 2

3 2% 0 3 2

4 2 8 -4 8 2

b 13 30 40 20 15 2

6 80 192 210 152 60 24 2

7 579 1344 1477 994 479 140 35 2

8 4738 10800 11672 7888 3660 1232 280 48 2

9 43387 97434 104256 32958 32958 11268 2856 504 63 2

10 439792 976000 1036050 695760 328920 115056 30300 6000 840 80 2
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