This site is supported by donations to The OEIS Foundation.



Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000146 From von Staudt-Clausen representation of Bernoulli numbers: a(n) = Bernoulli(2n) + Sum_{(p-1)|2n} 1/p.
(Formerly M1717 N0680)
1, 1, 1, 1, 1, 1, 2, -6, 56, -528, 6193, -86579, 1425518, -27298230, 601580875, -15116315766, 429614643062, -13711655205087, 488332318973594, -19296579341940067, 841693047573682616, -40338071854059455412 (list; graph; refs; listen; history; text; internal format)



The von Staudt-Clausen theorem states that this number is always an integer.


G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Th. 118.

Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, pp. 168-170.

H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Section 5.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


T. D. Noe and Seiichi Manyama, Table of n, a(n) for n = 1..317 (first 100 terms from T. D. Noe)

Joerg Arndt, Table of n, a(n) for n = 1..1000 (contains terms with more than 1000 decimal digits)

Donald E. Knuth and Thomas J. Buckholtz, Computation of tangent, Euler and Bernoulli numbers, Math. Comp. 21 1967 663-688. [Annotated scanned copy]

Donald E. Knuth and Thomas J. Buckholtz, Computation of tangent, Euler and Bernoulli numbers, Math. Comp. 21 1967 663-688.

R. Mestrovic, On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers, Journal of Integer Sequences, Vol. 17 (2014), 14.8.4.

Eric Weisstein's World of Mathematics, von Staudt-Clausen Theorem

Index entries for sequences related to Bernoulli numbers.


A000146 := proc(n) local a , i, p; a := bernoulli(2*n) ; for i from 1 do p := ithprime(i) ; if (2*n) mod (p-1) = 0 then a := a+1/p ; elif p-1 > 2*n then break; end if; end do: a ; end proc: # R. J. Mathar, Jul 08 2011


Table[ BernoulliB[2 n] + Total[ 1/Select[ Prime /@ Range[n+1], Divisible[2n, #-1] &]], {n, 1, 22}] (* Jean-François Alcover, Oct 12 2011 *)


(PARI) a(n)=if(n<1, 0, sumdiv(2*n, d, isprime(d+1)/(d+1))+bernfrac(2*n))


Cf. also A002882, A003245, A127187, A127188.

Sequence in context: A181509 A213026 A074023 * A318001 A211933 A167010

Adjacent sequences:  A000143 A000144 A000145 * A000147 A000148 A000149




N. J. A. Sloane


Signs courtesy of Antreas P. Hatzipolakis (xpolakis(AT)hol.gr)

More terms from Michael Somos



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 16 13:43 EST 2019. Contains 319193 sequences. (Running on oeis4.)