login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000133 Number of Boolean functions of n variables.
(Formerly M1547 N0604)
4

%I M1547 N0604

%S 2,5,30,2288,67172352,144115192303714304,

%T 1329227995784915891206435945914040320,

%U 226156424291633194186662080095093570364871077725232774230036394136943198208

%N Number of Boolean functions of n variables.

%C The next term (a(9)) has 152 digits. - _Harvey P. Dale_, Sep 04 2020

%D M. A. Harrison, The number of equivalence classes of Boolean functions under groups containing negation, IEEE Trans. Electron. Comput. 12 (1963), 559-561.

%D M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 153.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Sean A. Irvine, <a href="/A000133/b000133.txt">Table of n, a(n) for n = 1..11</a> (shortened by _N. J. A. Sloane_, Jan 13 2019)

%H <a href="/index/Bo#Boolean">Index entries for sequences related to Boolean functions</a>

%F a(n) = (2^(2^n) + (2^n-1)*2^(2^(n-1)+1))/2^(n+1). - _Sean A. Irvine_, Sep 27 2009

%t Table[(2^(2^n)+(2^n-1)2^(2^(n-1)+1))/2^(n+1),{n,8}] (* _Harvey P. Dale_, Sep 04 2020 *)

%K nonn,easy,nice

%O 1,1

%A _N. J. A. Sloane_

%E More terms from _Vladeta Jovovic_, Feb 23 2000

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 8 14:59 EDT 2022. Contains 356009 sequences. (Running on oeis4.)