login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000130 One-half the number of permutations of length n with exactly 1 rising or falling successions.
(Formerly M1528 N0598)
12
0, 0, 1, 2, 5, 20, 115, 790, 6217, 55160, 545135, 5938490, 70686805, 912660508, 12702694075, 189579135710, 3019908731105, 51139445487680, 917345570926087, 17376071107513090, 346563420097249645, 7259714390232227300, 159352909727731210835, 3657569576966074846118 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

(1/2) times number of permutations of 12...n such that exactly one of the following occurs: 12, 23, ..., (n-1)n, 21, 32, ..., n(n-1).

Partial sums seem to be in A000239. - Ralf Stephan, Aug 28 2003

REFERENCES

F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.

J. Riordan, A recurrence for permutations without rising or falling successions. Ann. Math. Statist. 36 (1965), 708-710.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..200

FORMULA

Coefficient of t^1 in S[n](t) defined in A002464, divided by 2.

a(n) ~ exp(-2) * n!. - Vaclav Kotesovec, Sep 11 2014

MAPLE

S:= proc(n) option remember; `if`(n<4, [1, 1, 2*t, 4*t+2*t^2]

       [n+1], expand((n+1-t)*S(n-1) -(1-t)*(n-2+3*t)*S(n-2)

       -(1-t)^2*(n-5+t)*S(n-3) +(1-t)^3*(n-3)*S(n-4)))

    end:

a:= n-> coeff(S(n), t, 1)/2:

seq(a(n), n=0..30);  # Alois P. Heinz, Dec 21 2012

MATHEMATICA

S[n_] := S[n] = If[n<4, {1, 1, 2*t, 4*t+2*t^2}[[n+1]], Expand[(n+1-t)*S[n-1] - (1-t)*(n-2+3*t)*S[n-2] - (1-t)^2*(n-5+t)*S[n-3] + (1-t)^3*(n-3)*S[n-4]]]; a[n_] := Coefficient[S[n], t, 1]/2; Table[a[n], {n, 0, 30}] (* Jean-Fran├žois Alcover, Mar 10 2014, after Alois P. Heinz *)

CROSSREFS

Cf. A002464, A086853. Equals A086852/2. A diagonal of A010028.

Sequence in context: A127065 A168357 A052850 * A009599 A112833 A144503

Adjacent sequences:  A000127 A000128 A000129 * A000131 A000132 A000133

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 27 15:19 EDT 2017. Contains 287207 sequences.