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ACCURATE ESTIMATION
OF THE NUMBER OF BINARY PARTITIONS

CARL-ERIK FROBERG

Abstract.

Many authors have worked with the problem of binary partitions, but all estimates for
the total number obtained so far are restricted to the exponential part only and hence very
crude. The present paper is intended to give a final solution of the whole problem.

0. Introduction.

A binary partition of a given positive integer n is defined as a sum of a suitable
number of integers, all chosen from the set M={1,24,8,16,... =24, k=
0,1,2,... For example, the number 10 can be represented in the following 14
ways: 8+2=8+4+1+1=4+4+2=4444+1+1=4+2+4+242=4+24+2+1+1
=442+ 1+ 14+ 1+1=44+1+1+1+14+14+1=2424242+2=242+242+1
+1=2424241+14+14+1=2424+14+1+14+1+14+1=241+1+14+14+1+1
+1+1=14+1+4+1+1+14+14+1+1+1+1. One such representation will be called
a partition, and we denote the number of binary partitions of n with b(n). The
number b(n) grows extremely fast with n and as an example b(22°) is of order 10*2,
Previous authors have concentrated on estimates of the exponent and it is
obvious that all such estimates must become very crude. It is the purpose of the
present paper to give accurate estimates of the function b(n) itself. To this may
only be added that some authors have treated the arithmetical properties of b(n);
however, such aspects will be left outside this discussion.

1. Generating function.

Denoting the generating function by F(x) we see directly that the following
relation holds:

1) Fx) = (I+x+x+ . )1 +x+x*+ . )0 +x*+x5+ .. )

{1-x)(1-x})(1—=x%...} 7' = i b(n)x" .
n=0

Replacing x by x* we get

F(x*) = {(1=x)(1=xH(1-x%...} 7!, ie.
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. () (1—x)F(x) = F(x?).

Comparing coefficients for x*" and x*"~! we find:

b2n)—b(2n—1) = b(n)
b2n—1)—b(2n—2) = 0.

We prefer writing:

(3) b(2n)—b(2n—2) = b(n) .

Successively replacing n by n—1,n—2,...,1 and adding we obtain
4) b(2n) = bO)+b(L)+...+b(n).

For moderate values of n, b(n) can quickly be generated and naturally it is
sufficient to consider only even arguments. Table 1 shows b(n) for n<128 while
Table 2 shows values for considerably higher arguments.

Table 1. The function b(n) for small values of n.
n <b-(n)) n n n ‘ b(ni)

34 238 66 2030 98 9042
36 284 68 2268 100 9828
38 330 70 2506 102 10614
40 390 72 2790 104 11514
42 450 74 3074 106 12414
44 524 76 3404 108 13428
46 598 78 3734 110 14442
48 692 80 4124 112 15596
50 786 82 4514 114 16750
52 900 84 4964 116 18044
54 1014 86 5414 118 19338
56 1154 88 5938 120 20798
58 1294 90 6462 122 22258
60 1460 92 7060 124 23884
62 1626 94 7658 126 25510

1828 96 8350 128 27338

For obvious reasons the function b(n) is defined only for non-negative integer
arguments. We now define b(1), t> 0 for arbitrary real positive arguments by the
corresponding polygon train. Then as is easily found

(5) J b(i)dt = b2n)—3(b(m)+1).

0




We also define a comparison function f(x) of basic importance through the .
relation
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0 f@x) = r+rf<r) dt
0
and obtain easily

™ F09 = 3 X2k

k=0

It can be expected that the functions b(t) and f(t) are closely related as can also be
seen from the table below.

Table 2. The functions b and f, and the quotient f/b for the
arguments 2", m=0(1)22. The digits within parentheses are

10-exponents.

b(2™)

J@m

S@2™)/b(2")

0
1
2
3
4
5
6
7
8
9
10

B DD B = e e e
N — OO0 00~ BN —

2. Estimate of b(n) in terms of f (n).

1

2

4

10

36

202

1828

27338

692004

30251722

2.320518948(9)

3.163595804(11)
7.747718049(13)
3.439486994(16)
2.789389711(19)
4.160370500(22)
1.147881854(26)
5.888804009(29)
5.642645813(33)
1.013924614(38)
3.428872562(42)
2.189360335(47)
2.647068374(52)

1.565145112
2.271492556
4.177346475
1.050850850(1)
3.861131108(1)
2.182702409(2)
1.976264912(3)
2.956668386 (4)
7.490099601 (5)
3.276150128(7)
2.513529362(9)
3.426734386(11)
8.391635220(13)
3.725136162(16)
3.020961898(19)
4.505746260(22)
1.243189439(26)
6.377859677(29)
6.111357343(33)
1.098159289(38)
3.713754576(42)
2.371259253(47)
2.866984385(52)

1.565145112
1.135746278
1.044336619
1.050850850
1.072536419
1.080545747
1.081107720
1.081523296
1.082378079
1.082963187
1.083175539
1.083177055
1.083110558
1.083049934
1.083018944
1.083015626
1.083029089
1.083048386
1.083065914
1.083077848
1.083083290
1.083083134
1.083079082

THeOREM 1. Let a be a constant >0 such that af ()<b(t—1) when 1 <t<n.
Then the same estimate is valid for all t> 1.




ACCURATE ESTIMATION OF NUMBER OF BINARY PARTITIONS

Proor. Choose a positive integer N, 1SN <=n.

Then
N N -1
mj Jtdt = j b(t)dt .
1

0

Putting ¢= [} f(1)dt=127149 ... we have

af fRN)—1—c] < b2N=2)—3[b(N-1)+1],
and
af (2N) < b2N =2)— (3)b(N —1)+a(l +c)—F < b2N-2) = b2N-1).

Further of 2N —1) < af (2N) < b(2N=2).
For convexity reasons we have directly for non-integer values

af(t) < b(t—1), 1=Zt<2n

from which the theorem follows. W
(Note: o can be chosen=0.44).
For the next estimate we need two lemmas.

Lemma 1. f(2x)> xf (x)/log, x when x=3.

Proor. For small values of x, e.g. 3<x <6 the truth of the lemma is clear by
direct inspection. Choose 6 <x<12 and put

y = f(2x)—xf (x)/log x = f(2x)— (In2)xf (x)/In x .

Then dy/dx =2/"(2x)—[In 2/(In x)*1- [In x(xf" (x) + £ (x)) —f (¥)]. But 2" (2x)=/f(x)
and hence /' (x)= (3)/(x/2).
Thus dy/dx=f(x)—[In2/(in x)*]- [In x((x/2) f (x/2) +f (x) = f (x]].

Using the lemma as induction hypothesis we have

f(x) > (x/2)f(x/2)/log, (x/2)
and replacing (x/2)f(x/2) by f(x) (log, x—1) we get:
dy/dx > (In2)f(x)/(In ) e

Now y>0 when x=6 and dy/dx>0 when 6 <x <12 and the proof is clear for this
interval. Repeating the same arguments for larger and larger intervals we see that
the proof follows in general. ®

Lemma 2. If b(t) < Bf (1) holds for t=2N—1 and t=2N, then it holds for 2N — 1
<t<2N as well, provided that b(N)> (3)f (N).




Proor. The function y=f(x) is convex downwards and if a straight line .
between (2N —1,b(2N —1)) and (2N, b(2N)) should intersect the curve, there must
be two roots ¢, and t, (possibly equal). Then from Rolle’s theorem there must
exist a point ¢, t, <&<t,, such that S(E)=b@2N)—b(2N —1)=b(N). If, on the
other hand, b(N)>max f'(t), (2N —1<t<2N), then there can be no root and the
maximum occurs in the right end-point. Since f*(2N)= (£)f(N) the condition is
b(N)> @) f(N). ®
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We now proceed to establish an upper bound for b(t) as well and assume

b(t) < B.f(1), t=n (B,>%).

Integrating we get

j" bdr = b2n)—G)(b(n)+1) < B, f fyde = B,(f2n)-1).

Hence
b@n) < B,/ 2n)+ B, f () +1- B,
< B @)+ GBS, = Banf 20)
if we define
Baw = Bu(L+ B)S (n)if 2n) 9

When n is sufficiently large we can use Lemma 1 and find:
Ban < B.(1+log,n/2n) . .

Choosing n=2", (m=2,3,4...), and observing that b(4)=4, f(4)=4.177346 . ..
we see that B,=0.9576 is acceptable and that the successive B-values converge
towards a limit as m — oo. This limit is less than B=BsITpm-2 1 +mp2m*h
=1.920114.
From Lemma 2 it follows that the bound b(t)<Bf (t) holds in general.
Hence we have now proved that there exist positive constants « and f such that

o f(t) < b(t—1)
and

b() < Bf(t).

The first inequality can trivially be re-written
af(t) < b(r),

the only difference being that the constant « can be improved to 0.63772. Hence
we have the final result
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THEOREM 2.
af(t) < bty < Bf(O).

Obviously this theorem goes far beyond all previous estimates, which are in fact
contained as special cases.

It can be argued that in practice we are only iriterested in the case when ¢ is
large, and then the estimates o =0.63772 and f=1920114 are far too pessimistic.
The following slightly heureistic argument shows the situation clearly.

Assume that o f(£) <b(¢), 244 <1 <21%0 where a, =0.9233039 as found through
direct computation. Then

244 2100 2100 —
%J fydt+o, J - f(Hde < J b(t) dt
g4

1

A B
— p = 1) BbQRI—1)+1] < bR D).

Here A~1.84-10%%° B~2.08656-10'*%® and A/B=10"1**°(1) and only a very
slight change in the constant o is needed to make it adequate for the doubled
interval. Analogous reasoning will show that the quotient f/b for increasing
argument will oscillate between closer and closer limits. An approximate estimate
1s

lim [ f(x)/b(x)] = 1.083063 4-0.000001 .
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