login
Denumerants: Expansion of 1/((1-x)*(1-x^2)*(1-x^5)).
(Formerly M0279 N0098)
6

%I M0279 N0098 #57 Sep 08 2022 08:44:27

%S 1,1,2,2,3,4,5,6,7,8,10,11,13,14,16,18,20,22,24,26,29,31,34,36,39,42,

%T 45,48,51,54,58,61,65,68,72,76,80,84,88,92,97,101,106,110,115,120,125,

%U 130,135,140,146,151,157,162,168,174,180,186,192,198,205,211,218,224,231,238

%N Denumerants: Expansion of 1/((1-x)*(1-x^2)*(1-x^5)).

%C Number of partitions of n into parts 1, 2, or 5.

%C First differences are in A008616. First differences of A001304. Pairwise sums of A008720.

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 120, D(n;1,2,5).

%D M. Jeger, Ein partitions problem ..., Elemente de Math., 13 (1958), 97-120.

%D J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 152.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vincenzo Librandi, <a href="/A000115/b000115.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1,0,1,-1,-1,1)

%F a(n) = round((n+4)^2/20).

%F a(n) = a(-8 - n) for all n in Z. - _Michael Somos_, May 28 2014

%e G.f. = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 6*x^7 + 7*x^8 + ...

%p 1/((1-x)*(1-x^2)*(1-x^5)): seq(coeff(series(%, x, n+1), x, n), n=0..65);

%p # next Maple program:

%p s:=proc(n) if n mod 5 = 0 then RETURN(1); fi; if n mod 5 = 1 then RETURN(0); fi; if n mod 5 = 2 then RETURN(1); fi; if n mod 5 = 3 then RETURN(-1); fi; if n mod 5 = 4 then RETURN(-1); fi; end: f:=n->(2*n^2+16*n+27+5*(-1)^n+8*s(n))/40: seq(f(n), n=0..65); # from Jeger's paper

%t nn=50;CoefficientList[Series[1/(1-x)/(1-x^2)/(1-x^5),{x,0,nn}],x] (* _Geoffrey Critzer_, Jan 20 2013 *)

%t LinearRecurrence[{1,1,-1,0,1,-1,-1,1},{1,1,2,2,3,4,5,6},70] (* _Harvey P. Dale_, Sep 27 2019 *)

%o (Magma) [Round((n+4)^2/20): n in [0..70]]; // _Vincenzo Librandi_, Jun 23 2011

%o (PARI) a(n)=(n^2+8*n+26)\20 \\ _Charles R Greathouse IV_, Jun 23 2011

%Y Cf. A001304, A008616, A008720.

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_