login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000115 Denumerants: Expansion of 1/((1-x)*(1-x^2)*(1-x^5)).
(Formerly M0279 N0098)
6
1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18, 20, 22, 24, 26, 29, 31, 34, 36, 39, 42, 45, 48, 51, 54, 58, 61, 65, 68, 72, 76, 80, 84, 88, 92, 97, 101, 106, 110, 115, 120, 125, 130, 135, 140, 146, 151, 157, 162, 168, 174, 180, 186, 192, 198, 205, 211, 218, 224, 231, 238 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Number of partitions of n into parts 1, 2, or 5.

First differences are in A008616. First differences of A001304. Pairwise sums of A008720.

REFERENCES

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 120, D(n;1,2,5).

M. Jeger, Ein partitions problem ..., Elemente de Math., 13 (1958), 97-120.

J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 152.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (1,1,-1,0,1,-1,-1,1)

FORMULA

a(n) = round((n+4)^2/20).

a(n) = a(-8 - n) for all n in Z. - Michael Somos, May 28 2014

EXAMPLE

G.f. = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 6*x^7 + 7*x^8 + ...

MAPLE

1/((1-x)*(1-x^2)*(1-x^5));

(From Jeger's paper:) s:=proc(n) if n mod 5 = 0 then RETURN(1); fi; if n mod 5 = 1 then RETURN(0); fi; if n mod 5 = 2 then RETURN(1); fi; if n mod 5 = 3 then RETURN(-1); fi; if n mod 5 = 4 then RETURN(-1); fi; end; f:=n->(2*n^2+16*n+27+5*(-1)^n+8*s(n))/40;

MATHEMATICA

nn=50; CoefficientList[Series[1/(1-x)/(1-x^2)/(1-x^5), {x, 0, nn}], x]  (* Geoffrey Critzer, Jan 20 2013 *)

PROG

(MAGMA) [Round((n+4)^2/20): n in [0..70]]; // Vincenzo Librandi, Jun 23 2011

(PARI) a(n)=(n^2+8*n+26)\20 \\ Charles R Greathouse IV, Jun 23 2011

CROSSREFS

Cf. A001304, A008616, A008720.

Sequence in context: A118868 A017885 A011874 * A033552 A062420 A089197

Adjacent sequences:  A000112 A000113 A000114 * A000116 A000117 A000118

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 23 22:30 EDT 2017. Contains 283985 sequences.