login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000113 Number of transformation groups of order n. 1
1, 3, 4, 3, 6, 12, 8, 6, 4, 18, 12, 12, 14, 24, 24, 6, 18, 12, 20, 18, 32, 36, 24, 24, 30, 42, 12, 24, 30, 72, 32, 12, 48, 54, 48, 12, 38, 60, 56, 36, 42, 96, 44, 36, 24, 72, 48, 24, 56, 90, 72, 42, 54, 36, 72, 48, 80, 90, 60, 72, 62, 96, 32, 12, 84, 144, 68 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all positive integers n and m. - Michael Somos, Jan 03 2017

REFERENCES

B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 139.

LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000

Index to divisibility sequences

FORMULA

Let psi(m) = A001615(m) (Dedekind's psi function). Write n = 2^i*3^j*k, where (6,k) = 1 and let i' = floor(i/2) for i < 6, i' = 3 for i >= 6; let j' = 0 for j = 0 or 1, j' = 1 for j >= 2. Then a(n) = psi(n/(2^i'*3^j')) = psi(n)/(2^i'*3^j').

Multiplicative with a(2^e)=3*2^Floor[(e-1)/2] for 0<e<7, a(2^e)=3*2^(e-4) for e>=7, a(3^e)=4 for 0<e<3, a(3^e)=4*3^(e-2) for e>=3 and a(p^e)=(p+1)*p^(e-1) for p>3. - T. D. Noe, Nov 14 2006

EXAMPLE

G.f. = x + 3*x^2 + 4*x^3 + 3*x^4 + 6*x^5 + 12*x^6 + 8*x^7 + 6*x^8 + 4*x^9 + ...

MATHEMATICA

psi[n_] := n*DivisorSum[n, MoebiusMu[#]^2/#&]; a[n_] := (i=IntegerExponent[ n, 2]; j=IntegerExponent[n, 3]; ip = If[i<6, Floor[i/2], 3]; jp = If[j<2, 0, 1]; psi[n]/(2^ip*3^jp)); Array[a, 60] (* Jean-Fran├žois Alcover, Feb 04 2016 *)

a[ n_] := If[ n < 1, 0, n Sum[ MoebiusMu[d]^2/d, {d, Divisors @ n}] / (2^Min[3, Quotient[IntegerExponent[n, 2], 2]] 3^Boole[1 < IntegerExponent[n, 3]]) ]; (* Michael Somos, Jan 03 2017 *)

PROG

(PARI) {a(n) = if( n<1, 0, n * sumdiv(n, d, moebius(d)^2 / d) / (2^min(3, valuation(n, 2)\2) * 3^(1 < valuation(n, 3))))}; /* Michael Somos, Jan 03 2017 */

CROSSREFS

Sequence in context: A183100 A046897 A109506 * A069915 A033634 A111970

Adjacent sequences:  A000110 A000111 A000112 * A000114 A000115 A000116

KEYWORD

nonn,easy,mult

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 17 19:40 EST 2017. Contains 294834 sequences.