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ON THE BOREL FIELDS OF A FINITE SET
MARLON RAYBURN

1. Introduction. Let X be a nonempty set, = the complete lattice of
all distinct topologies on X, and A the complete lattice of all Borel
fields on X. It is now known [3] that 2 is a complemented lattice. If
Borel field B is a topological Borel field, say generated by topology
T, we shall indicate this by writing B [T].

Consider the map Z—A given by T—B[T]. We shall say topologies
T, and T are “Borel-equivalent,” T1~T3, iff B[T1]=B[T:]. Then ~
is an equivalence relation, so we may speak of the quotient space
3/~. If X is a countable space, the map is onto. If X is finite, Ais a
complemented sublattice of Z. The structure of 2/~ is examined for
the cases card(X) =2 and 3, and the structure of A for card(X) =4.
The method of K-matrices [2] is developed as a useful approach to
the finite case.

2. Development.

LeMMA. If X is a countable space and B a nonempty famaly of subsets
of X, the following are equivalent:
(a) B s a Borel field.
(b) B is a closed-open topology.
L (c) B is a topological Borel field.

Proov. Easily, every Borel field on a countable space is a topology,
and being closed under complementation, each of its sets is closed-
open. On the other hand, a closed-open topology is closed under
complementation, so it is a Borel field.

If card(X) =n, (finite), let f(n) be the number of distinct topologies
that can be defined on X. Let g(n) be the number of distinct Borel
fields that can be defined on X.

COROLLARY. If 1<n, then g(n)/f(n) <1.

It can readily be found that g(1)=1, g(2)=2, g(3)=5, and g(4)
—15. Krishnamurthy [2] obtained the following values for f: f(1) =1,
F(2) =4, f(3) =29, f(4) =355. As an upper bound on f(n), he finds that
f(n) <27—1, Below, we shall note that the square root of this number
is an upper bound on g(n). Krishnamurthy uses what we shall here
call “K-matrices.”

Received by the editors April 5, 1967. g {'_'

S’

885 ' 3

N 176 |
‘j"’T“’%‘* / ;\WTM | 355 Lot 17 #1925



P

i

886 MARLON RAYBURN [August

Let card(X) =n. A “K-matrix” is an nX#» matrix (a;;) where for
all 4, j, a;;=0 or 1, for all 4, a;;=1, and for all 4, j: (a;;=1) implies
[(as=1) implies (ax=1)].

A correspondence between the set of all X% K-matrices and the
family of all distinct topologies on X is obtained by taking the 7th
row R;=S(x;) as the smallest open neighborhood of x;, determined by
a;=1 iff x;&S(x;). The final condition on K-matrices then reads:
if 2, &S (x;), then S(x;)SS(x;). It is a standard exercise [1, Chapter 1,
Exercise B] that the filters generated by the S(x;) subject
to this condition, correspond to a unique topology and that this
correspondence is 1-1 and onto. Hereafter, we shall often identify a
topology 7" with its K-matrix (a;).

THEOREM. Let topology T have K-matrix (a;). Then T is a closed-
open topology iff (a;) is symmetric (with respect to the main diagonal).

Proor (ONLY IF). Suppose for some 4, j, a;;=1 and a;;=0. Then
x;€S5(x:) and x;€S(x;). Hence S(x;) is a proper subset of S(xy).
Suppose T is closed-open. Then S(x;) is closed, so S(x)\S(x;) is open
and x,&S(x;)\S(x;). But this is a proper subset of S(x;), contra-
dicting S(x;) the smallest open neighborhood of x;.

(IF). Let (a4;) be a symmetric K-matrix and suppose some set ¢ in its
topology, 7', is not closed. Then & X\t is not open, so there exists
an x;€ X \¢ such that S(x;) is not a subset of X\¢. Hence Se;)Mtx2 .
Let x,&S(x;)M¢t (open), so S) ES(x)NISS(x;). Then x,ES(x;),
so a;;=1. Yet x;&.S(x,), so a;;=0. Contradiction.

COROLLARY. If 1 Sn, then g(n) < 2Dz,

For there are that many symmetric # X7 matrices whose entries
are 0 and 1, and which have 1’s on the main diagonal. It is conjec-
tured that lima.., g(n)/f(n)=0.

LeMMA. Let (ai;) be a K-matriz and define byj=1 iff a;j=a,=1.
Then (bi;) is the Borel field generated by the topology (as).

Proor. First, (by) is a K-matrix. Suppose for some distinct 7, 7,
bij=1. Then a;;=a;;=1. Claim: if for any k, bz =1, then by =1. But
if by=1, then ajx=ax;=1. Now a;;=1 and a;5=1, so az =1, More-
over a;;=1and a;;=1, so ax;=1. Thus ay=a;= 1, and b4 =1.

Now let 7y and T, have K-matrices (a;;) and (bi;) respectively.
It is easily checked that T3C T, iff whenever b;j=1, then a;=1.
(bi;) is symmetric by construction, so T} is a Borel field and is clearly
the smallest Borel field containing 73.
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LeEmMA. Topology (a.;) generates the Borel field P(X), the power set,
iff for all distinct 1, j, row Ri7#row R;.

Proor (ONLY IF). Suppose there exists some &, p such that k>p
and R,=R,. Then ai,=a, =1. Now let (by;) be given by: for all 4,
bii=1, bxp=b =1, and b;;=0 otherwise. Then (b;) is a proper Borel
field and {(a:;) < (bij).

(I¥). Suppose for all distinct %, j, Ri#=R;. If a;;=1, then a;;=0,
else S(x;) = S(x;) and R;=R;. Hence to find the generated Borel field,
let b;;=0 whenever i>j. But this gives the identity matrix, hence the
power set.

=1

THEOREM. Let (a;;) be a K-matrix. Then |ai,-
iff (ay;) generates Borel field P(X).

=0or 1, and |a.-,~

Proor. The process of reducing the matrix to find its generated
Borel field shows the matrix to be row equivalent to the identity
matrix, and row equivalent 0-1 matrices have the same determinant.

COROLLARY. Let B be a Borel field with nXn K-matrix (as;). If B
contains n—1 singletons, then B=P(X).

ProoF. If B contains n—1 singletons, then |a| =1.

3. Lattice structure of A. It is clear that the intersection of two
closed-open topologies is a closed-open topology. Hence if X is count-
: able, the Z-meet and the A-meet of any two Borel fields coincide.
b On the other hand, the smallest topology containing the union of any
two Borel fields is contained in the smallest closed-open topology
containing that union. To see that at least in the finite case, the Z-
join coincides with the A-join, observe that the identification of
topologies with their K-matrices induces a lattice structure on the
K-matrices.

A handy observation for the £-join of two K-matrices is (cii) = (ai;)
\/ (bs;) iff[(c;=1) iff(ai;=1) and (b;;=1)]. Correspondingly for the
S-meet of K-matrices, (d:;) = (a:i)) A (bs;) iff (d:;) is the smallest (least
number of 1’s) K-matrix containing (e;;), where (ei;=1) iff(a;;=1)
or (by;=1).

THEOREM. If X is finite, then A is a sublattice of Z.

ProoF. Let By and B, be Borel fields with K-matrices (a;;) and (b:;)
respectively. Let (ci;) = (as;) V (bs;). But by the construction of (¢i;),

since (a;;) and (b;;) are both symmetric, so is (c:;). Hence the Z-join
of Borel fields is a Borel field.



888 MARLON RAYBURN [August

THEOREM. If X is finite, then A is a complemented lattice.

Proor. Let (bs;) be a proper Borel field. By a previous result, if
(bi;) contains n—1 singletons, it contains # singletons. Hence let the
number of singletons of (b;;) be k, and note 0<k<n—2. Let {x;} be
a singleton not in (b;;) and consider the Borel field M, = {,@', X, {x,- },
X\{x:} }. Clearly MiA (b)) ={ &, X }. Suppose M,V (bs;) > (5:;), the
identity matrix. Let p stand for the number of singletons in M;\/ (b.;)
and notice k< p=<n-—2. Let {xj} be a singleton not in My\/ (b;;) and
let M, be the Borel field generated by the pair of singletons {xi},

x;}. Claim: MyA(biy)={&, X}. [For if {xi x;} E(bs;), then

X, x,}\{x,} = {x,} EMl\/(b”)] If Mz\/(bu)# ((Sij), repeat the pro-
cess. At each step, My A (by;) = {,@’, X}, and for some m we must have
Ma N (bi5) = (8:5).

It follows from a result of Steiner’s [3, Theorem 1.2] that a Borel
field on a countable space is a principle topology. Since Steiner estab-
lishes that every topology has a principle complement, it seems likely
that A is a complemented lattice whenever X is countable.

4. Examples. For a space of two points, the two Sierpinski (proper)
topologies are both Borel-equivalent to the power set.

As an application of this, consider the following well-known result.
If (X, T) and (Y, 7)) are arbitrary topological spaces, and if
f: (X, T)—(Y, Ty) is a homeomorphism, then f: (X, B[Ti])
—(Y, B[T:]) is a Baire function. A counterexample to the converse
can be found on a space of two points. Let .Sy and .S, be the two Sier-
pinski topologies on X. Then B[S]=B[S;]=P(X). The identity
map id: (X, B[Si])—=(X, B[S:]) is a Baire function, yet id: (X, Si)

-(X, S:) is not continuous.

We shall use the “n-basic number” notation of [2] to look at the
lattice structure of 3/~ for the case #=3, and that of A for n=4.
The “n-basic number” for an n X7 K-matrix is the integer obtained
by suppressing the main diagonal of the matrix and writing the
remaining entries, in lexographic order of indices, as a binary number.
Similarly given an n-basic number, its K-matrix can be reconstructed.

For a space of three points, the 3-basic numbers which give Borel
fields are 5, 18, 40, 63, and 64. Now 63 [{ &, X} ] and 64 [P(X)] are
complementary, of course. The proper Borel fields 5, 18, and 40 are
pairwise complementary. Moreover, the topologies 43 and 60 are
Borel-equivalent to 40, the topologies 30 and 51 to 18, and topologies
15 and 53 to 5. All the others (except 63) are Borel-equivalent to 64.

For a space of four points, the 4-basic numbers for Borel fields and
for their corresponding complements are given in the following table:

>
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Borel field Is a complement of (in A)
9 660, 1122, 2886, 3504
66 660, 1581, 2313, 3504
144 1122, 1581, 2313, 2886
219 516, 1056, 2304
516 219, 1122, 2313, 3504
660 9, 66, 1056, 1122, 2304, 2313
1056 219, 660, 2313, 2886
1122 9, 144, 516, 660, 2304, 2313
1581 66, 144, 2304
2304 219, 660, 219, 1122, 1581
2313 66, 144, 516, 660, 1056, 1122
2886 9, 144, 1056
3504 9, 66, 516
4095 [{¢,X}] 4096
4096 [P(X)] 4095

5. Observations. It is of some interest to note that “is a comple-
ment of” is in general neither unique nor transitive. It would be of
further interest to know, in a finite space, the minimum number of
complements (in A) a proper Borel field can have as a function of z,
and the minimum number of topologies in the proper equivalence
classes of £/~. This latter could be used as a measure of how badly
many-one the map Z—A is, and could give information toward our
conjecture on lim,., g(n)/f(n).

We have shown a characterization of those topologies Borel-
equivalent to P(X), namely that their K-matrices be nonsingular.
A study of those topologies (“sparse” topologies) whose generated
Borel fields are proper will be made in a later paper.
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