login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000100 a(n) is the number of compositions of n in which the maximal part is 3.
(Formerly M1394 N0543)
6
0, 0, 0, 1, 2, 5, 11, 23, 47, 94, 185, 360, 694, 1328, 2526, 4781, 9012, 16929, 31709, 59247, 110469, 205606, 382087, 709108, 1314512, 2434364, 4504352, 8328253, 15388362, 28417385, 52451811, 96771787, 178473023, 329042890, 606466009, 1117506500 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

For n > 5, a(n) - (a(n-3)+a(n-2)+a(n-1)) = F(n-2) where F(i) is the i-th Fibonacci number; e.g., 11 - (1+2+5) = 3, 23 - (2+5+11) = 8; also lim_{n->inf} a(n)/(a(n-1)+a(n-2)+a(n-3)) = 1 and lim_{n->inf} a(n)a(n-2)/a(n-1)^2 = 1. - Gerald McGarvey, Jun 26 2004

a(n) is also the number of binary sequences of length n-1 in which the longest run of 0's is exactly two. - Geoffrey Critzer, Nov 06 2008

a(n) is also the difference between the n-th tribonacci number and the n-th Fibonacci number; i.e., a(n) = A000073(n) - A000045(n). - Gregory L. Simay, Jan 31 2018

Let F_0(n) be the n-th Fibonacci number, A000045(n). Let F_1(n) = Sum_{j=1..n} A000045(n+1-j)*A000045(j). Let F_r(n) = Sum_{j=1..n} F_(r-1)(n+1-j)*A000045(j). Then the number of compositions of n having exactly r 3's as the highest part is F_r(n), and a(n+1) = F_1(n-3) + F_1(n-6) + ... - Gregory L. Simay, Apr 17 2018

The Apr 17 2018 comment can be generalized. Let F(n,k) be the n-th k-step Fibonacci number, with the convention that F(0,k)=0 and F(1,k)=1. Let F(n,k,0)= F(n,k) Let F(n, k, 1) = Sum_{j=1..n} F(n+1-j,k)*F(j,k). Let F(n,k,r) = Sum_{j=1..n} F(n+1-j, k, r-1) * A000045(j, k). Let G(n,k,r) be the number of compositions of n having k as the largest part exactly r times. Then G(n,k,r) = F(n+1 - kr, k-1, r). - Gregory L. Simay, May 17 2018

REFERENCES

A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 47, ex. 4.

J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 155.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

J. L. Yucas, Counting special sets of binary Lyndon words, Ars Combin., 31 (1991), 21-29.

LINKS

T. D. Noe, Table of n, a(n) for n = 0..200

Nick Hobson, Python program for this sequence

J. L. Yucas, Counting special sets of binary Lyndon words, Ars Combin., 31 (1991), 21-29. (Annotated scanned copy)

Index entries for linear recurrences with constant coefficients, signature (2, 1, -1, -2, -1).

FORMULA

G.f.: x^3/((1-x-x^2)*(1-x-x^2-x^3)).

a(n+3) = Sum_{k=0..n} F(k)*T(n-k), F(i)=A000045(i+1), T(i)=A000073(i+2).

a(n) = 2*a(n-1)+a(n-2)-a(n-3)-2*a(n-4)-a(n-5). Convolution of Fibonacci and tribonacci numbers (A000045 and A000073). - Franklin T. Adams-Watters, Jan 13 2006

EXAMPLE

For example, a(5)=5 counts 1+1+3, 2+3, 3+2, 3+1+1, 1+3+1. - David Callan, Dec 09 2004

a(5)=5 because there are 5 binary sequences of length 4 in which the longest run of consecutive 0's is exactly two: 0010, 0011, 0100, 1001, 1100. - Geoffrey Critzer, Nov 06 2008

G.f.: x^3 + 2*x^4 + 5*x^5 + 11*x^6 + 23*x^7 + 47*x^8 + 94*x^9 + 185*x^10 + 360*x^11 + ...

MAPLE

a:= n -> (Matrix(5, (i, j)-> if (i=j-1) then 1 elif j=1 then [2, 1, -1, -2, -1][i] else 0 fi)^(n))[1, 4]: seq(a(n), n=0..40); # Alois P. Heinz, Aug 04 2008

MATHEMATICA

a[n_] := a[n] = a[n-1] + a[n-2] + a[n-3] + Fibonacci[n-2]; a[n_ /; n < 3] = 0; Table[a[n], {n, 0, 35}] (* Jean-Fran├žois Alcover, Aug 03 2012, after Gerald McGarvey *)

a[ n_] := SeriesCoefficient[ If[ n > 0, x^3 / ((1 - x - x^2) (1 - x - x^2 - x^3)), -x^2 / ((1 + x - x^2) (1 + x + x^2 - x^3))], {x, 0, Abs@n}]; (* Michael Somos, Jun 01 2013 *)

LinearRecurrence[{2, 1, -1, -2, -1}, {0, 0, 0, 1, 2}, 40] (* Harvey P. Dale, Jul 22 2013 *)

PROG

(Haskell)

a000100 n = a000100_list !! (n-1)

a000100_list = f (tail a000045_list) [head a000045_list] where

   f (x:xs) ys = (sum $ zipWith (*) ys a000073_list) : f xs (x:ys)

-- Reinhard Zumkeller, Jul 31 2012

(PARI) {a(n) = polcoeff( if( n>0, x^3 / ((1 - x - x^2) * (1 - x - x^2 - x^3)), -x^2 / ((1 + x - x^2) * (1 + x + x^2 - x^3))) + x * O(x^abs(n)), abs(n))}; /* Michael Somos, Jun 01 2013 */

CROSSREFS

Cf. A000045.

Sequence in context: A174162 A186253 A226462 * A293339 A175867 A083005

Adjacent sequences:  A000097 A000098 A000099 * A000101 A000102 A000103

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Henry Bottomley, Dec 15 2000

Better definition from David Callan and Franklin T. Adams-Watters

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 19 11:26 EDT 2018. Contains 312775 sequences. (Running on oeis4.)