e

ENUMERATION OF NON-SEPARABLE
PLANAR MAPS

WILLIAM G. BROWN

1. Introduction. In (2), Tutte has shown that the number, B, of r
non-separable planar maps having n edges is [2(3n — 3)!]/[n! (2n ~ 1
Rooting was accomplished by designating one edge as the roof, orientii,
and distinguishing between its sides as left and right. We shall here conyg
the number, B, .., of rooted non-separable planar maps having n edyges
such that the face to the left of the root is incident with exactly m «l, -
which maps will be said to be of type [n, m]. Following this we shall cony; _
the number, ,B, ., of rooted non-separable planar maps of type [, m] w 1
are invariant under automorphisms induced by a rotation of period r o
boundary of the face to the left of the root. It will then be possible to calcu!
the number, up to orientation-preserving isomorphisms, of non-separable piir
maps having n edges, where rooting is accomplished by designating a face (duin
a vertex) as the root, and assigning to it an orientation. This is a first step tow.
cnumerating the isomorphism classes of planar non-separable maps.

2. We adopt the terminology of Tutte in (2); all maps referred to will ™
planar. The following lemma will be required in our construction.

(2.1) LEMMA. v is a cut-vertex of a map M if and only if there is a facc
which is incident with v more than once.

Proof. This is (6.1) of (2), q.v.

(2.2) CorOLLARY. Let M be a map in which an edge E 1is incident with 1
distinct faces, Fyand Fs. Merging E with Fi and Fs produces a simply connc:
region F; thus the resulting dissection of the 2-sphere is a map, which we s
by M. The set of cut-vertices of M' is the union of the set of cut-vertices &
and the set of vertices of singularity of the boundary of F in M'.

In our enumeration we shall not include the loop-map or link-map @i
the non-separable maps. Because of the latter exclusion the faces to the *
and right of the root will be distinct, and will be designated as the &
root-face (or simply the external face) and the infernal root-face, respectitt
of the map; edges in the boundary of the external face will be cal]cd'”“' )
edges. Exclusion of the loop-map implies that every face is incident with ©*
than one edge.

We define, as formal power series
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NON-SEPARABLE PLANAR MAPS

(%]}
o
3

(23) Bn-(y) = 22 Bn,mymy

2.4) B n(x) By mx",

S

n==_

8

(2.3) B(x,y) = Zzz 22 B.:mx"y”'

Y #Bu(3) = 3 Blx) y"

n=2 m=2

It is clear that B, , = 0 for n < m. Hence Y 5_s B, . is a finite sum, and

B,1) = 3 > Bewd®

n=2 m=2

iz a well-defined power series.

3. An equation for B(x,y). Let M be a non-separable map of type
[n, m], with root-edge . directed from vertex p to vertex ¢g. Let I'; and T'»
denote the boundaries of the external and internal root-faces, respectively.
The orientation of A4 induces an orientation in the edges of T’y such that the
number of edges directed towards and away from each vertex is one. Let M’
be the map obtained from A/ by erasing .1 and merging the external and
internal root-faces. By (2.2), the cut-vertices of 3’ are those vertices (ex-
cluding p and ¢) common to I'; and T.. Proceeding from ¢ = a¢ along T'y in
the direction of the orientation, we label the cut-vertices (if any) of M’,
a1, Qs ..., 0, and set p = azy (p = ay if M’ is non-separable). Then the
ares not containing A which a; and a,4; intercept in T'y and T'» either together
constitute a simple closed curve (which, by the Jordan curve theorem, separates
the 2-sphere into two residual simply connected domains), or coincide as
single link (z = 0,1, ..., k). [n the former case, by erasing all edges of 3
i the residual region containing 4 to obtain the external face, and taking
the oriented edge of T'; which emanates from a, as root, we obtain a rooted

unon-separable map ;. Schematically, 1f has the form shown in Figure 1,

where any of the submaps M, may be degenerate as a link-map (cf. 2, § 8).
'hus M determines uniquely a sequence of & + 1 rooted non-separable maps,
M., of types [ny, m,] say (allowing links as tvpe [1, 2]) with each of which
i+ associated an index k, the number of edges which M contributes to the

external face of M (£ = 0, 1,..., k). The following conditions are necessary:
0 < hi < m; 1 .
1— 60 < 7, (z=0,1,...,k),
i k
?'1) <Zhi=m——1,
i=0
k
Z ny=n— 1
i=0
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FIGUre 1.

Conversely, any ordered sclection of &2 4+ 1 rooted non-separable maps of
types [n;, m,] (allowing links as type [1, 2]) with associated indices &; (z = 0,
l,..., k) satisfying (3.1) determines a rooted non-separable map.  Thus

2] k .
(7) Bn.m = kzs:o Z E (Bm‘.mi +5ru'.l 5m.’,2)y

where the second sum is taken over all ordered sets of positive integers
(no, n1, v oy My Mo, My, . . ., My Ra, by L., Ry) satisfying conditions (3.1) for
each k. (3.2) is equivalent to

j o

(3.3) Bx,y) = xy LZ:] | 2, B.®y+y+...+y"1+ x'y} .

Multiplying both sides of (3.3) by

Ji = 1

== 2 Bal@ly + 5"+ .. 3" =2y

we obtain

(3.4) 1 -9 {1 - Zm‘,z Ba@y+ 9+ . a4+ 9y = xy} B(x, y)

N [
= xy(1 — ) {Z By + 5" 4 ..+ " T+ vy

-2
e, ‘



(\ 3.5}

. -
WS AR AT E P AN AR MY 529

A |
’. (L —vi(l —xy) — }_‘ Boatxily — .\-—’}‘ Bix,

)
=, Haloly = 3T =

me2

which we can rewrite as

: = xy{yB(x, 1) — B(x, ) + 2y(1 — )},

or, after rearrangement,

(3.6) (B(x, M2+ [1 — 3+ xy* — yB(x, D]B(x, )
— xy*B(x, 1) + (1 — ] = 0.

This is analogous to equation (3.8) in (1).

Thus far we have defined B(x, y) ouly as a formal power series, having
made no hypothesis as to its representing an analytic function in some neigh-
bourhood. This accounts for the method used in (3.4) and (3.5) for “summing’’
geometric series.

By comparing coefficients of powers of x in (3.6) we obtain

(1 — 9)Bs.(y) =y (1 — ),

(1 —¥Bs.(y) = —3"By.(y) + y*Ba (1),
(3'7) < n—2 n—=2 ’
(1= 9B = =2 Bo(9) Bas) +3 25 Bo(1) Baes. 1)

— 9 Bar. () + ¥ Ban (1) (n > 3).

Multiplying both sides of equations (3.7) by the infinite formal power series

1+ y+ y*+ ... we see that the series B, (y), and hence B(x, ), are com-

pletely determined by (3.6). Thus the only solution-pair (o(x, ¥), 7(x)) of the
functional equation

(3.8) [o(x, M+ 1 —y+xy2 — yr(®)]o(x, y) — xy2r(x) +x(1 —2)] =0

in non-negative powers respectively of x and y, and x alone, satisfying the
conditions
(3.9) o(x, 1) is well defined and equal to 7(x), and

(3.10) the smallest power of x appearing is x?,

is (B(x, v), B(x, 1)). For any function r(x) which is analytic at x = 0 we can
solve (3.8) as a quadratic cquation in o(x, y) and obtain two solutions in
terms of 7(x). If one of these solutions satisfics (3.9) and

(3.11) ’ a(x,0) = a,(x,0) =0 for all x,

then the Taylor serics expansion of o(x. v1 about (x, ¥ = (0,01 will be
B(x, . '



530 WILLIAM G. BROWN

4. Solution of equation (3.6). Solving equations (3.7) for n <8 we
ain

By (y) = »% :

B;.(y) = y* + 9% -

Bi.(y) = 2y* + 3y* + ¥4

Bs.(y) = 6y* + 9y° + 6y* + ¥%

Bs.(y) = 22y? + 32y* + 26y* + 10y° + 35,

B (y) = 91y? + 129y® + 112y* + 60y° + 15y° + ¥,

from which we conjecture that

| R Bro3
(4.1) Bl 1) =2 20 T Gm — 1)1
(This statement is known, of course, to be true from (2); however, our argu-
ment does not require this fact.) As we shall see in (4.16), (4.1) can be ex-
pressed parametrically by

' (4.2) ‘ x = u(l —u)?
(4.3) B(x, 1) = u*(1 — 2u),
for u sufficiently small, in particular for u satisfying
(4.4) | ul < 3.

For convenience we set

(4.5) v=1—u,

.6) z = vy.
gﬁbstituting

@“.7) (@) = w2(1 — 2u).

in (3.8) we obtain
(4.8) o2+ [1 — (1 +u+ 2u%)z + uztle — u?2?[(1 —u — u?) —vz] =0,
where ¢ = o(x[u], ¥[«, 2]). The discriminant of (4.8), considered as a quad-
ratic equation in o, is
1 — (14 u+ 2u?)z + uz’]* + 4ug?[(1 — u — u?) — vg]

= (1 —2z+2)[1 — 2u(l + 2u)z + w?s?].

By the binomial theorem,
1/2

4.9) 1 —2u(l+2u)z+ w2 =11 — uz)® — 41%2)

= (2t —2)! o =211
-~ - 1 — uz .
1 —uz—2 Z‘_l 0 1)11¢ ( uz)




(Q.

it
pons
—

NoNeeR B VHARDE P AN AR AN

[ has expansion is absolutely convergent for Wl 2 satisdviny
(1 — uz)? — A 2y > 0,

in particular, for u, s satis{ying (L) and

(+.10) lz] < 2,

{for then
(1 — uz)? — 4u?|z) > 1 — 2uz + u?s* — § > § — 2uz;

but
lus| < 1.

The solutions of (4.8) are

(4.11) o(x,y) = 3{—1+ (1 +u+ 2u?)z — ug
+(1 — 2)[1 — 2u(l + 2u)z + u?z?]/2}.

Setting y = 1, i.e. 3 = v, in (4.11) and selecting the positive sign, we obtain
' o(x, 1) = u(l — 2u).

This is true in particular for u satisfying (4.4), in which case it follows that
(4.10) is also satisfied. In general, selecting the positive sign in (4.11), we
obtain

(412) olx,9) = %{[—1 + (1 4w+ 24"z — uz’ + (1 — 2)(1 — uz)]

— (1 —2) 21 —‘;2{;:21))!! e uz)l_z'z'}

. B © ) (2t_2)|(2t—2+5)‘. 245 _t+s
=uz— (1-2) ;1 ;0 rG—-Iist@—2r " ®

_e (j = 2)! .
- ,; ng,:n G-—m+ D (G—m)!@2m —j-z)!"jz
SRR : (j —2)! 5

- ; — 1’z
2 2 Gl G —m— DI @n = !
o om . ' _ . :
= > > = G=2) m(Z'Sm %] ) : |ujﬂ"'y'"
2 B Gomt D G —m) @m—J)!
for u, y-sufficiently small, in particular for u satisfying (4.4) and y satisfying
(4.13) ly| < 16/7.

We note that conditions (3.9) and (3.11) are fulfilled; hence the POWCT Serics
expansion of o(x, ¥) about the origin will indeed be By, v
Applving Lagrange's theorem (1, §5:0 4. p 152) to

K Xt
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we obtain

I

_ _ @ idl—l
(414) o= (1w =142 = (G R
ti Bi+i—1! ,

2 T2+ 1) F for ¢t > 0.

_ 3 Moo @ o @m —2]—1) (2] —m) (= 2B+ 2f —m — 1)
IMD MDY G=m+ DG —m)! @m— )l (2 + 2j — m)! x’

m=2 j=m i=0

_ f Zw: it 2m) (3 — 25 —1) (2f —m) (j — 2! Br—j—m =D .,
iy L e (o — 20— m)! (G — m)! (G —m 4+ 1)! 2m — j)! Yo

L)
y

i.e.

-_m
T (@2n — m)!
minn2m (3, 95— 1) (2f —m) (j—2)'(Bn —j —m — 1)!
n—)G—m!({G—m+1)@m -

(4.13) B X

(n>m>2).

j=m
Also .
(4.16) B(x,1) = w1 — 2u) = vt — 2%

_ 4t z"’ B 43! 12 2" 31+ 5)!

2t TT (21 + 4y 24 31 (2 + 6)1

L& G
=22 Nen—ni”

n=2

as conjectured in (4.1).

5. Isomorphisms. Let M,°, M}, A7, respectively, denote the classes of
vertices, edges, and faces of maps M; (z = 1, 2). An isomorphism f : My — My
is defined to be a triple of one-to-one mappings, f’ cMe—M? (j=0,1,2)
which preserve incidence relations.

(5.1) LEmMA. Let f:My— M, be an isomorphism between non-separable
maps. Let p, q be the end-points of an edge A incident with a face Fof M
and suppose that the action of f on p, g, A, F is given. Then f is completely
determined.

Proof. By (2.1), as M is non-separable, the boundary of every face is a

simple polygon (i = 1, 2). Thus f maps edges and vertices of the boundary
of F onto edges and vertices of the boundary of f2(F). This mapping of the
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Let M, M, be rooted non-separable maps. An isomorphism f My — Jl
will be called a boundary isomorphisn il it carries the external face of .
onto the external face of 3, A boundary isomorphism will be said to
orientation-preserving or -reversing according to its action on the orientati
induced in the boundary of the external face by the root.

An isomorphism of a map onto itself will be called an automorphism.
follows immediately that

(5.2) LEMMA. An orientation-preserving boundary automorphism induces
rotation of the boundary-graph of the external face.

(5.3) COROLLARY. An orientation-preserving boundary automorphism 15 cc
pletely determined by a rotation of the boundary-polygon of the external fa

(5.4) CororLrLarY. The orientation-preserving boundary automorphisms o
non-separable map M of type [n, m] form a group, N[M], isomorphic i
subgroup of the rotation group of the m-gon; thus R[M] is a cyclic group wi
order divides m.

For any set-theoretic mapping ¢ <A —> A, &, will represent the mapp
which associates with cach element a of 4 the ordered set

(5.5) &0 = {a, ¢a, ¢%a, . .. , ¢ al (r=1,2,.. D

6. Rooted non-separable maps of type [n, m;7]. A rooted non-separe
map M of type [n, m] is said to be of type (n, m; r] if r divides the ordel
R[M]; thus rlm. We define ;Ban to be the number of rooted non-separ:
maps of type [n, m;r]. The corresponding generating functions are

6.1) Ba.(9) = ;LLZ an,mymv
(6-2) rB.m(x) = i: an,mxn:
(6.3) By =3 > Bunxy"

= Z x" ,/3".(}’) = Z., rB.m(-\.),\'m-

n=al me=2
We have seen in § 4 that B(x, ¥ defines an analytic function for (v, ¥ in
rectangle defined by (L 15) and

b STTRT 0w e 07 R
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Hence ,B(x, ¥), being majorized by B(x,y), defines a function analytic in the
same rectangle. .

A rooted non-separable map M of type [n, m; 7] will be said to be of type
[n, m; 7]* if the order of N[M] is exactly r. Let B, be the number of rooted
r‘; of type [n, m;r]*. Then

(65) ’ an.m = i rkB:,m

k=1

and hence, by the Mobius Inversion Theorem (3, p. 36),

e

(66) rB:.m = Z /‘(k) kan,my

k=1

where u is the Mabius function. Clearly the number, up to orientation-pre-
serving isomorphisms, of rooted non-separable maps of type [n, m;r]* is
(r/m) Bxm. Hence, the number, up to orientation-preserving isomorphisms,
of rooted non-separable maps of type [n, m] is ‘

© <

(67) ‘ Ln.m = Z (7/7”) rB:.m = (l/m) i Z l-"'(k)fk;Bn'.m

r=1 =1 k=1

(1/m) > 2 u(k). (s/k) sBam

slm  kis

(1/m) 2. ¢(s) sBum

slm

where ¢ is the Euler function (3, p. 27). Thus, if we define a face-rooted (vertex-
rooted) non-separable map of type [r, m] to bé a non-separable map containing’
n edges, in which one face (vertex) of valency m is designated as the root and
assigned an orientation, then the number of such maps up to isomorphisms
which preserve the root and its orientation is L, n.

7. An equation for ,B(x, y). Clearly 1B(x,y) = B(x, y).

wsume now that 7 > 1, and let M be a rooted non-separable map of type
[1‘,.:5; r] with root-edge A directed from vertex p to vertex ¢. Let Fi, Fq
respectively denote the external and internal root-faces, and T, TI'» their
respective boundary-polygons. We shall represent the sets of vertices and
‘edges in T; respectively by T.% T'/! (1 = 1,2). Let f be the generator of
9R[M] which induces a rotation through w = m/r edges of T';in the direction
of the orientation of 4. (We shall suppress the superscripts j of the mappings
f(=01,2.)

We shall show in what follows that M corresponds to a combination of
rooted maps chosen from six different classes; and, conversely, that any
combination of rooted maps from these classes chosen subject to restrictions
to be determined corresponds uniquely to a map of type [n, m; r]. The re-
strictions will be of two types: _

. . (a) specifying the number of maps to be chosen from each class;
(b) requiring that the total number of edges in the maps chosen be equal
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b aned that the total number of edges in these maps which correspond to
external cdaes of M Lie cqual to nn

Thus, subject to cach sct of specifications ol type (1), any partition of n
aned mz consistent with restrictions (b) will vield a unigue map of type (n, morl
fach set of specifications of tvpe (a) will therefore correspond to a term ina
sum of generating functions which will be set equal to B(x, v): cach term n
this sum will be the product of generating {unctions corresponding to cach
of the classes from which maps may be chosen, according to the particular
set of specifications (a); the variable ¥ will enter into these generating func-
tions according as the corresponding maps contribute to I'y.

Representative elements of the six classes are:

Class I. A single edge in Ty, corresponding to the generating function xy.

Class II. An element obtained by erasing the root from a non-separable
rooted map, and including its remaining external edges as external edges of
M. The corresponding generating function .is B(x, ¥)/xy-

Class ITI. An element similar to those of Class 11, but not contributing to
I',, corresponding to the generating function B(x, 1)/x.

Class IV. An element consisting of a rooted non-separable map of type
(n, m; 7] (allowing the link-map as type [1,2;2]) but contributing no edges
to Iy It corresponds to the generating function ,B(x, 1) 4 x5, 3.

Class V. An element consisting of a non-separable rooted map of type
[, m; 7] (allowing the link-map as type (1, 2;2]) and contributing A7 external
edges to I'y, where m = 7%, 0 <h<w. The generating function for this class is

3 B+ v+ ¥ T A I S

h=1

i

(1 _'yr)_l Z'Jl B .hr(x) (] - y’”) —+ x0r2

= (1 - yr)—l[TB(xv 1) - TB(xr }')] + xar.?

for vy sufficiently small.

Class VI. An element consisting of a rooted non-separable map of type
[n, m] which contributes to I't kb of its external edges, beginning at the origin-
ating vertex of the root and proceeding along the boundary of its external
face in the direction of the orientation induced by the root, and in which a
vertex is chosen from among those m — h — 1 which remain in the boundary
but which are not incident with any edge selected for inclusion in I'i

(0 <h <m—1). The corresponding generating function is

R B — Dy + (m =3+ O

m=2

B T R e A LU

=y — 1) "By D) = 2B DT 0= VB ) = ¥ B D]

for v sufticiently small,
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Elements of Classes I, I1, III, and VI will never appear alonc in our decon,.
position, but always as a set of 7 identical copies; thus each edge in the repre.
sentative element will correspond to 7 edges in A, and the relevant gencrating

(ﬁq_nctions will be obtained by replacing x, ¥ in the generating functions for
eir classes respectively by x7, y'. ‘

Consider now the ‘‘dissection” M’ of the 2-sphere obtained from M by
merging the edges of f,4 with ¥, and the faces of f+Fs to form a single region
F; cf. (5.5). M’" must fall into one of the following categories:

(1) Fis not simply connected, i.e. M’ is not a map;

(2) M'is a map, but may have cut-vertices.

Case (1). Suppose F is not simply connected. lf the elements of f:Fy were

all distinct, M’ would be a map, by (2.2); thus two, and hence all, of the
elements of f,F» coincide. Proceeding from ¢ = ao along T in the direction
of the orientation, let us label the vertices common to I';, Tz as ay, @s . . .,
ars1 = fp. We see that M is a combination of r identical copies of one element
from each of Classes I and II (allowing the element from Class Il to be
degenerate, as a vertex-map); thus the generating function corresponding to
this case is xy"J(x", ¥"), where

. = —== 4 1.
(7.1) Tey) = 22

Case (2). Suppose now that M’ is a map. By (2.2) the cut-vertices of M’
are the elements of the two sets

0 = vertices, excluding those of f,p, f,g, common in M to T'; and the boundary-
graph of some clement of f /%

A = vertices not in © common to the boundaries of two or more faces of f,Fs.

Il

In M, beginning at ¢ = ao and proceeding along T in the direction of the
orientation, we denote successive cut-vertices (if any) of M’ between faces

and Faby ay, as, . . ., a;, where a;is the last such vertex before fp; similarly,
voceeding from fp = by along Ty in the opposite direction, we denote suc-
cessive cut-vertices between faces Fi and fFy by by, b, ..., by, where b, is

the last such vertex before g. These two sequences may coincide at most in
their last vertices a, and b, (j > 0, & > 0). Each sequence determines an
r-tuple of identical elements of Class II (which may be degenerate); thus the
factor x"y"[J(x", ¥)]* will appear in the final expression for the generating
function in this case.

Case (2a). Suppose A = @. Then the remainder of the map, after exclusion
of the portions enumerated above, is of Class V, and the generating function
for this sub-case is

'y [T, N (1 — 97 B (w, 1) — B(x, y)] + 20, 2.

Case (2b). Suppose A = . Proceeding along TI';in M from a,in the direction
of the orientation of A, we denote successive vertices of TI';®/M fI:® by
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o ey # @, then the vegion bounded iy the ares (not contal
1) aycn becr and a by respectively in the boundaries of Fuo, f75, and Fic
sponds to an clement of Class VI. The vertices ey, ¢q, ..., ¢, determin
clement of Class 111 which may be degenerate. I ¢y = aj, the cleme
Class VI is degenerate, while the element of Class 111 may not be degenc
The remainder of M, all cut-vertices having been accounted for, corresy
to an element of Class 1V, which may be degenerate. Thus the gener
function for this sub-case is

Y [T LB, 1) + w82 + L[CET, )G 1) — 1,
where

(72)  Clxy) = y(1 — ) [B,(x, 1) — 2B(x, 1)]
+ (1 - y)_z[B(xv :V) - yzB(xv 1)
It follows that
(7.3) B, y) =y [T, y)PR{[Bx, 1) + x8,.2 + 1]C(7, y) T (", 1
+ (1 — )y ,B(x, 1) — ,B(x, )] — 1} + x"y"J(a
1.e.
(74  {1+xy A — ) UGN B, y)
= 2y [J(x", Y [ B(x, 1) 4 x8,. + 1]C(x", y)J (x", 1)
+ (1 — )"y ,B(x, 1) — 1} + x"y"J(x,

for y sufficiently small.
Cases (1), (2a), and (2b) are represented for » = 3 in Figures 2, 3,

~ respectively.

(" 8. Solution of equation (7.4). We begin by reducing (7.4) to a

convenient form. For ease of computation, we set

(8.1) . K(x,y) =1 — (1 4+ u -+ 2u?)sz + uz?,
(8.2) L{x,y) = —u2?[(1 — u — u?) — vz],
(8.3) D(x,y) = (1 — 2)[1 — 2u(l + 2u)z + u?2?]'/2

We temporarily drop the arguments from B(x,y), C(x, y), D(x, y), Ji
K{x, %), L(x,»), and set

(N.) B, = B(x, 1),
IS5y Boo= B,(x, 1).
Phea (3.6) and (L11) (with positive sizn) yield

" . Bt = =K =1,

- Ao In
!
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Hence

(8.8) Jy(l —y)t4 1= [xy(l — y)]71[B? + 2uvBz + (uv’z + uvz — uz?)]
= [xy(1 — y)] [ (2uvz — K)B + (u?® + uvz — uz® — L)]
= [2xy(1 — ]~ CQuvz — K)K + (2uvz — K)D

( + 2(un2? + uvz — uz® — L)] by (8.6) and (8.7)
= [2xy(1 — ][D* + (2uvz — K)D]
=D(1 —y)Y.
Now
(8.9) —y2B; — K +xy = — 1 -1 —ul—u— u?)y],
(8.10) —y2B, — L/xy = uy(l — (1 — u — u?).
Ilence

JC = [xy(1 = 7B + [y(1 — (B — 28,) — ¥Bi + (1 — M+ xyB
+ xvlv(l = V(B — 280 — viBy 4 (1 — 2]

= fev(l — W v = 0 (B — OB A+ (1 = = B = K xv) i3
4oaviv(l — (B, — DR = = Ry - I vyl by (S.6)

= e{l = ) UE (B e 28 = ke 2l o= u't oot v
Fev N ) aanl (S, 10),
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From (4.11) we find that

r’8.11) B, = u%(2 — 3u — 3u?) (1 —u — u?)~L
Hence -
(8.12) JC=—vy[(1 =90 —u—u)]"J+ (1 —y~L
Substituting in (7.4) where d, 2z are now redefined by
(8.13) X" = uv?, |
(8.14) z =y

(v remains equal to 1 — u), we obtain
(1 — y)71D (", y) T (&7, 37) B (%, ¥)
= J&, " [A — )Y [=xy B, ) + u(l — u — u?)]
X [Ble, 1)+ x50+ Ly +[—1+5 + 5 B(x, DB, y) +xy'1} + 2"y,
which reduces to '
(8.15) D@, y") Blx,y) = u(l —u — u?)y Blx, 1)
+ [—BE", ) +uy (1l — u — u?) — xy¥]
+ xy%, o[ —B(x% ¥2) + u(l — u — u?) — x?y?]

for u,y sufficiently small.

Unlike (3.6), this equation can be solved directly, without the need for a

preliminary conjecture. Setting y" = 1/v in (8.15) we find that the left side
vanishes, and we obtain after reduction

(8.16) B, 1) = u(l —u — u?)™! + x6, 2u(l + u)(l —u — uz)—
( wvhich, substituted in (8.15), yields
D', y") B(x,y) = [—B(", ") + uy (1 — w?) — wy]
+ xy%, o[ —B(x? ¥?) + u — uv®y?]
= H[=D@, y) + (1 — 2) (1 + uz)]
+ x5, 2[—D(x%, %) + (1 — 2)(1 + 2u — uz)l}.

Hence, for u, y sufficiently small,

®17)  .B(x, ) = 3[{( +un)l = 2u(l + 2u)z + w2712 — 1]
+ xy%,0{ (1 + 20 — uz)[1 — 2u(l + 2u)z + ug?j-12—11].

By the binomial theorem,

8.18)  [1 —2u(l + 2u)z + u'2']7 " = Z“’: (25) V(1 — gy~

_ zm: i (s '*“J.)'- w'tigt,

= 4= stst(j— 9!
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Also
(8.20)

»

(1 - :.:lil = Dl 4 Zade :.'::,:; LY = 1
~ \; Jls -7 — 1)

ey 1 . L]
= = st (g — )t

.y . . N .
_ J@s A+ (47 = DB+ 25+ — D!
_ZJZ_I ,Z_u ;l stst (G — )t (20 4+ 25 4+ 7))
N by (4.14)
= i I 2k — N k=1 Bw—k—j— 1) x"y"
ey = (k=N =N — R (w — ) (2w — )

Wt =

= 2

I
]

(14 24 — uz){1 — 2u(l + 2u)z + u2z2]—1/2 _1

@ j+1 - .
_ (]+1) (s+j7— D! s+5_1
2 X GG

o N RGED @D+ DIGi+ 25+ — 1)
=2 2 N GG st D@ s )

X g CHIFOyrS by (4.14)

o min(w0,2j+1)

I
gl

J=0 w=j+1 k=jt+1

(]+1) (2k_.7) (k—l)‘(3w_k_.7—1)‘ wr_jr
=D Gk—F— DI —k+ 1) (@—k) Qw—j * 7"

(,-dence +Bn.m = 0 everywhere, except in the following cases:

(8.21)

B G ™ME (k) (k= 1) Bw—k—j—1)!
T Q- m =D E— D = B (w — k)
232w+l.2} = m

min(w,24—1) (2k _] -+ ]_) (k —_ 1)! (3w —k _])' :
= i FDIR-NI @~k Dlw— k!

(w>j,w,i=12...;r=223...).

X

We note that the value of ,B,,.,, is independent of 7 (r > 1). For small
w, j, the values of B, ,; and 2Byes1.2;, can be found respectively in Tables 1
and T By means of formula (6.7), the numbers L., ,, have been computed
for m < 8, m < 8, and are listed in Table IT1. The non-separable fuce-rooted
maps of type [n, ] (for v < 6) are shown in Fizure 5.
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TABLE 1 (4?/
rBrw.ri - g

N\J
w1 2 3 4 5 6 5 +Brurs
1 1 ' : 1
2 2 1 3
3 6 6 1 13
4 24 26 12 1 63
5 110 120 75 20 1 326
6 546 594 416 174 30 1 1761

W 34k
@J@QK TABLE II QT?)

2Bawy1,2i
NJ

w\ 1 2 3 4 5 6 2 2Bowy,2i

, 1 1 1

/ 2 2 2 4

/ 3 7 8 3 , 18

l/ 4 30 34 21 4 89

5 143 160 114 44 5 466

6 728 806 609. 308 80 6 2537
1LY ZG 205"

Y o / l{' TABLE 111
Lrl,m

m
B 2 3 4 5 6 7' YL

/ 2 1 1

/ 3 1 1 2
\/ 4 2 1 1 4
5 4 3 2 1 10

6 14 12 8 2 1 37

7 49 43 30 12 3 1 138

9‘?9«1’ C 8D
We also compute directly from (8.16) the coefficients of ,B(x, 1) (r > 1).
(8.22) ,B(x,1) = uv™'(1 — a7 x5, 0[—1 + o1 — wBHY
i WP s l:_l 4 f: W v_("“’:|

p=0 70
2R (Gp+3) Bs—p—1!
:L:'O 8_);.“ (s—1-=2p)!@2s+p+ 1! x

% & (5p+ 1) @s—p) aer]
+5'-2[_x+y2_0 Y G @ r -J

Il

Il
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i rBru.ri

13 i
63
326
1761

-

.
——

" eBawrr2i

1

4
18
89
468

B

5 <

10 n
37
138

—
—

snts of ,B(x, 1) (r > 1).

r-l (1 _ u‘Zv——l)——l]

9p —(p+D)
n ? g (€7 ] ‘
p=0 L

[ l)‘ £
T

y + 1) (3s — P! x2s+;‘ ’
2@)!(‘25-\'?-\'1)‘. 4

-

Fraoy, o,
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by (4.14). Hence

I

. - [(Q-l)/?l
‘ Gp+3)Bs—p— 1! o
Bl =X X GoT-ep) @t pt D

(oo [5/2]
Gp+ 1) Bs—p)! o,
T b SZ_I ;0 G—2p)@s+p+ 1017 "

= (x" + 3= + 13x°" 4 63x*" + 326x°" + 1761x> + .. .)

+ 8,00 + 4x® + 18x" + 89x° + 466x" + 2537x" + .. .).

9. Asymptotic behaviour of ¥, L,,». By well-known properties of the
binomial coefficients,

(g 1) [(J—Zl‘jﬂ] (5P+3) (35-?—1)‘ _ [(s=1)/2] 5p +_3< 35— p >
’ 0 (s—1—2p)@2s+p+ 1! = 3 —p\2s+p+1

(DM 55 1) + 6( 3s ) [(s—1) /2] < 3s >
< Z% 6s — s— 1) \2s.4+p+1/ ,,Z,‘{) 2s+p+ 1

<SG 6
Hence, by Stirling's formula,
52 s <S5 (3) ~ 5 iy i = 1 () /2.
= 2 2s 2e s (2s) 27 4 \4 s
(L ie.

© nir 9.
(9'2) Z an.rJ s i (%) 3_” lf n=20 (mOd f).
=1

mr

Similarly it can be shown that

= 3(27\"* /3 (n )" .
(9.3) ;l 2By 25 S §<Z> 4/;<§> if =1 (mod 2).

Hence

. . n l 2—7 n/'z./‘/3 (n>1/z 3(27>n/2/‘/3_<n>3l2
L, X, Bun S Z4<> \z) t2% -\2
1 3\ /(27 "“V?(W)“”
<<§+§>(z> =\2/ -

But, also by Stirling’s formula,



II'J‘);'. A=
as of -
ARSLTe
Cliclatls
18 e
lex o,
te that

rabol i
,r.\ln-! 13
L every
1nd the

exactls
oinls ix

cuerale
wr'mL
SIGEN Ml
tside 7

t p. To

yar.a bl

P:Lif

et T

e il

NON-SEPARABLE PLANAR MAPS ' 545
@ 2(3n — 3)!
) 2 Bem = i g — 1)

m=1
26—(3n——3)(3n _ 3)3n—(5/2)(27r)1/2
e—n—(?n——l)nn+(l/2) (2” _ 1)2n—(1/2)27r

— _2_ (_2_7)" n_5/2 62[1 _ (l/n)]Sn‘(s/g)
9 (37r)1/2 [1 _ (l/zn)]Qn—(l/zj

~

4

_2_ 27 " s —1)2
9(4) wEm T

wace (27/4)12 < (27/4),

i [(5 £ )/ (£50)] -0

i1 this sense, almost all non-separable rooted maps M possess no orientation-

[reserving automorphisms other than the identity, i.e. R(M] = I. It follows

m=2

n n
15 S Lim~ 2, (1/m)Bun as n— ®,
m=2
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